
393

Chapter 13

Threads

Create and use the Thread class and the Runnable interface

Manage and control thread lifecycle

Synchronize thread access to shared data

Identify potential threading problems

Exam Topics

These days, when you buy a computer—be it a laptop or a desktop—you can see labels like dual core, quad core, etc.
to describe the type of processor inside the system. Processors these days have multiple cores, which are multiple
execution units in the same processor. To make the best use of these multi-cores, we need to run tasks or threads in
parallel. In other words, we need to make our programs multi-threaded (or concurrent). In essence, concurrency is
gaining importance with more widespread use these days. Fortunately, Java has built-in support for concurrency.
In this chapter, you’ll learn the basics of multi-threaded programming and how to write concurrent programs and
applications. More advanced topics about concurrency are covered in the next chapter.

The Latin root of the word concurrency means “running together.” In programming, you can have multiple
threads running in parallel in a program executing different tasks at the same time. Therefore, it is a powerful and
useful feature.

Multiple threads can run in the context of the same process and thus share the same resources. You can use
multi-threading for various reasons. In GUI applications or applets, multi-threading improves the responsiveness
of the application to the users. For large computation-intensive applications, parallelizing the jobs can improve the
performance of the application if it is running on multi-processor or multi-core machine.

Introduction to Concurrent Programming
In a typical application like a word processor, many tasks need to be executed at the same time—say, responding
to the user, checking spellings, carrying out formatting and certain associated background tasks, etc. Executing
multiple tasks at a time is expected from an interactive application like a word processor. It is possible to do such
tasks sequentially; however, the user experience might not remain same. For example, many word processors have an
auto-save feature. If the auto-save is invoked every 60 seconds, and if during that time the application will not respond
to the user’s actions, the user will feel as if the application is hanging. Instead of executing such tasks sequentially, if
the auto-save task is automatically executed in the background without disrupting the main activity of responding
to the user, the user experience will be much better. A similar scenario is running spell check in a dictionary in the

Chapter 13 ■ Threads

394

background as the user types some words and then suggesting alternative spelling for misspelled words. Performing
such activities in parallel enhances the responsiveness of the application, and thus the user experience. Such
parallel activities can be implemented as threads: running multiple threads in parallel at the same time is called
multi-threading or concurrency.

Multi-threading is very useful for Internet applications as well. For example, an applet displaying stock
market updates might want to retrieve the latest information and display graphs and text updates. You can write
a straightforward infinite loop that will keep waiting for the updates and then refresh the graphics and text. This
approach wastes processor cycles; also, the user will feel that the applet hangs when an update occurs. A better
approach is to make a thread wait for the updates to occur and inform the main thread when any update happens.
Then separate threads can refresh the applet graphics and text.

The Object and Thread classes and the Runnable interface provide the necessary support for concurrency in Java.
The Object class has methods like wait(), notify()/notifyAll(), etc., which are useful for multi-threading. Since
every class in Java derives from the Object class, all the objects have some basic multi-threading capabilities. For example,
you can acquire a lock on any object in Java (don’t worry if you don’t understand yet what we mean by “acquiring a
lock”—we’ll discuss it later in this chapter). However, to create a thread, this basic support from Object is not useful. For
that, a class should extend the Thread class or implement the Runnable interface. Both Thread and Runnable are in the
java.lang library, so you don’t have to import these classes explicitly for writing multi-threaded programs.

Important Threading-Related Methods
Table 13-1 lists some important methods in the Thread class, which you’ll be using in this chapter.

Table 13-1.  Important Methods in the Thread Class

Method Method Type Short Description

Thread currentThread() Static method Returns reference to the current thread.

String getName() Instance method Returns the name of the current thread.

int getPriority() Instance method Returns the priority value of the current thread.

void join(),
void join(long),
void join(long, int)

Overloaded
instance methods

The current thread invoking join on another thread waits
until the other thread dies. You can optionally give the
timeout in milliseconds (given in long) or timeout in
milliseconds as well as nanoseconds (given in long and int).

void run() Instance method Once you start a thread (using the start() method), the
run() method will be called when the thread is ready to
execute.

void setName(String) Instance method Changes the name of the thread to the given name in the
argument.

void setPriority(int) Instance method Sets the priority of the thread to the given argument value.

void sleep(long)
void sleep(long, int)

Overloaded static
methods

Makes the current thread sleep for given milliseconds
(given in long) or for given milliseconds and nanoseconds
(given in long and int).

void start() Instance method Starts the thread; JVM calls the run() method of the
thread.

String toString() Instance method Returns the string representation of the thread; the string
has the thread’s name, priority, and its group.

Chapter 13 ■ Threads

395

In this chapter, you’ll also be using some threading related methods in the Object class shown in Table 13-2.

Table 13-2.  Important Threading-Related Methods in the Object Class

Method Method Type Short Description

void wait(),
void wait(long),
void wait(long, int)

Overloaded instance
methods

The current thread should have acquired a lock on this
object before calling any of the wait methods.

If wait() is called, the thread waits infinitely until some
other thread notifies (by calling the notify()/notifyAll()
method) for this lock.

The method wait(long) takes milliseconds as an argument.
The thread waits till it is notified or the timeout happens.

The wait(long, int) method is similar to wait(long) and
additionally takes nanoseconds as an argument.

void notify() Instance method The current thread should have acquired a lock on this
object before calling notify(). The JVM chooses a single
thread that is waiting on the lock and wakes it up.

void notifyAll() Instance method The current thread should have acquired a lock before
calling notifyAll(). The JVM wakes up all the threads
waiting on a lock.

Creating Threads
A Java thread can be created in two ways: by extending the Thread class or by implementing the Runnable interface.
Both of them have a method named run(). The JVM will call this method when a thread starts executing. You can
think of the run() method as a starting point for the execution of a thread, just like the main() method, which is the
starting point for the execution of a program. You’ll first see two examples for creating threads—extend Thread and
implement Runnable—before learning the differences between them.

Extending the Thread Class
You’ll first consider how to extend the Thread class. You need to override the run() method when you want to extend
the Thread class. If you don’t override the run() method, the default run() method from the Thread class will be
called, which does nothing.

To override the run() method, you need to declare it as public; it takes no arguments and has a void return
type—in other words, it should be declared as public void run().

A thread can be created by invoking the start() method on the object of the Thread class (or its derived class).
When the JVM schedules the thread, it will move the thread to a runnable state and then execute the run() method.
(We’ll discuss thread states later in this chapter). When the run() method completes its execution and returns, the
thread will terminate. Listing 13-1 is the first example of multi-threading.

Chapter 13 ■ Threads

396

Listing 13-1.  MyThread1.java

 class MyThread1 extends Thread {
 public void run() {
 try {
 sleep(1000);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 // ignore the InterruptedException - this is perhaps the one of the
 // very few of the exceptions in Java which is acceptable to ignore
 }
 System.out.println("In run method; thread name is: " + getName());
 }
 public static void main(String args[]) {
 Thread myThread = new MyThread1();
 myThread.start();
 System.out.println("In main method; thread name is: " + 
 Thread.currentThread().getName());
 }
}
 

This program prints the following:
 
In main method; thread name is: main
In run method; thread name is: Thread-0
 

In this example, the MyThread1 class extends the Thread class. You have overridden the run() method in this
class. This run() method will be called when the thread runs. In the main() function, you create a new thread and
start it using the start() method. An important note: you do not invoke the run() method directly. Instead you start
the thread using the start() method; the run() method is invoked automatically by the JVM. We’ll revisit this
topic later.

For printing the name of the thread, you can use the instance method getName(), which returns a String. Since
main() is a static method, you don’t have access to this reference. So you get the current thread name using the static
method currentThread() in the Thread class (which returns a Thread object). Now you can call getName on that
returned object. As you’ll see later, the main() method is also executed as a thread! However, inside the run() method,
you can directly call the getName() method: MyThread1 extends Thread, so all base class members are available in
MyThread1 also.

The program prints messages from both the main thread and myThread (that you created in main). The name of
the thread printed is Thread-0. You’ll see the default naming conventions for threads a little later.

Figure 13-1 shows how this program executes and prints the output. Note that the main thread and the
myThread1 thread execute at the same time (i.e., concurrently), as shown in the diagram. If you try this program a
couple of times, you’ll either get the output shown above, or the order of these two statements might be reversed
(depending on which thread is scheduled first for executing this statement). You’ll study this non-deterministic
behavior a little later in this chapter.

Chapter 13 ■ Threads

397

Implementing the Runnable Interface
The Thread class itself implements the Runnable interface. Instead of extending the Thread class, you can implement
the Runnable interface. The Runnable interface declares a sole method, run().
 
// in java.lang package
public interface Runnable {
 public void run();
}
 

When you implement the Runnable interface, you need to define the run() method. Remember Runnable does
not declare the start() method. So, how do you create a thread if you implement the Runnable interface? Thread has
an overloaded constructor, which takes a Runnable object as an argument.
 
Thread(Runnable target)
 

You can use this overloaded constructor to create a thread from a class that implements the Runnable interface.
First, let’s change the previous program by implementing the Runnable interface. If you change “class

MyThread1 extends Thread” to “class MyThread1 implements Runnable” and compile the code, you get two
compiler errors:
 
MyThread1.java:3: cannot find symbol
symbol : method getName()
location: class MyThread1
 System.out.println("In run method; thread name is: " + this.getName());
 
MyThread1.java:7: incompatible types
found : MyThread1
required: java.lang.Thread
 Thread myThread = new MyThread1();
 

Main thread starts.

Main thread continues
execution System.out.printIn("In run method;

thread name is: " + getName());

JVM spawns a new thread and invokes the
run() method.

System.out.printIn("In main method;thread name is: " +
Thread.currentThread().getName());

Thread myThread = new MyThread1();

myThread.start();

Figure 13-1.  Spawning a new thread from the main method

i

Chapter 13 ■ Threads

398

The getName() method is available in the Thread class, but the MyThread1 class does not extend Thread any more,
so it results in a compiler error. Similarly, the start() method is available in the Thread class, and you don’t have that
method any more since you directly implement Runnable.

Listing 13-2 contains the improved version of the program implementing the Runnable interface after fixing these
two compiler errors.

Listing 13-2.  MyThread2.java

 class MyThread2 implements Runnable {
 public void run() {
 �System.out.println("In run method; thread name is: " + 

Thread.currentThread().getName());
 }
 
 public static void main(String args[]) throws Exception {
 Thread myThread = new Thread(new MyThread2());
 myThread.start();
 �System.out.println("In main method; thread name is: " + 

Thread.currentThread().getName());
 }
}
 

It prints the same output as the previous program:
 
In main method; thread name is: main
In run method; thread name is: Thread-0
 

You are implementing the run() method like the previous program. However, to get the name of the string, you
must follow a round-about route and get the thread name with Thread.currentThread().getName(), as you did in
the case of getting the thread name in the main() method. Similarly, in the main() method, to create a thread you
must pass the object of the class to the Thread constructor. It was easy and convenient to just create the MyThread1
object and call the start() method on that while extending the Thread class.

Should you extend the Thread or implement the Runnable?

You can either extend the Thread class or implement the Runnable interface to create a thread. So, which one do
you choose?

The Thread class has the default implementation of the run() method, so if you don’t provide a definition
of the run() method while extending the Thread class, the compiler will not complain. However, the default
implementation in the Thread class does nothing, so if you want your thread to do some meaningful work, you
need to still define it. The Runnable interface declares the run() method, so you must define the run() method
in your class if you implement the Runnable interface. So it doesn’t matter if you implement Runnable or extend
Thread. You have to define the run() method for all practical reasons. In summary, that is not a major difference
between extending a Thread and implementing Runnable. How about an inheritance relationship?

Since Java supports only single inheritance, if you extend from Thread, you cannot extend from any other
class. Since inheritance is an is-a relationship, you will rarely need the class to have an is-a relationship with
the Thread class. So OOP purists argue that you should not extend the Thread class. On the other hand, if you

Chapter 13 ■ Threads

399

implement the Runnable interface, you can still extend some other class. So, many Java experts suggest that it is
better to implement the Runnable interface unless there are some strong reasons to extend the Thread class.

However, extending the Thread class is more convenient in many cases. In the example you saw for getting the
name of the thread, you had to use Thread.currentThread().getName() when implementing the Runnable
interface whereas you just used the getName() method directly while extending Thread since MyThread1
extends Thread. So, extending Thread is a little more convenient in this case.

Both the techniques are useful and mostly equivalent for problem solving. So take a practical perspective here:
use either of them as needed for the specific problem you are trying to solve. For the OCPJP 7 exam, you’ll have
to know how to create classes for threading either by extending the Thread class or implementing the Runnable
interface, as well as the difference between the two approaches.

The Start( ) and Run( ) Methods
You override the run() method but invoke the start() method. Why can’t you directly call the run() method? If you
change the previous program by only changing myThread.start() to myThread.run(), what will happen? Listing 13-3
shows the program with this modification (plus changing the name of this class to MyThread3).

Listing 13-3.  MyThread3.java

 class MyThread3 implements Runnable {
 public void run() {
 �System.out.println("In run method; thread name is: " + 

Thread.currentThread().getName());
 }
 
 public static void main(String args[]) throws Exception {
 Thread myThread = new Thread(new MyThread3());
 myThread.run(); // note run() instead of start() here
 �System.out.println("In main method; thread name is : " + 

Thread.currentThread().getName());
 }
}
 

This prints the following:
 
In run method; thread name is: main
In main method; thread name is: main
 

Now the output is different! If you call the run() method directly, it simply executes as part of the calling thread.
It does not execute as a thread: it doesn’t get scheduled and get called by the JVM. That is why the getName() method
in the run() method returns “main” instead of “Thread-0.” When you call the start() method, the thread gets
scheduled and the run() method is invoked by the JVM when it is time to execute that thread.

 Never call the run() method directly for invoking a thread. Use the start() method and leave it to the
JVM to implicitly invoke the run() method. Calling the run() method directly instead of calling start()
is a mistake and is fairly common bug.

Chapter 13 ■ threads

400

Thread Name, Priority, and Group
You need to understand three main aspects associated with each Java thread: its name, priority, and the thread group
to which it belongs.

Every thread has a name, which you can used to identify the thread. If you do not give a name explicitly, a thread
will get a default name. The priority can vary from 1, the lowest, to 10, the highest. The priority of the normal thread is
by default 5, and you can change this default priority value by explicitly providing a priority value. Every thread is part
of a thread group. It’s a rarely used feature, so we won’t cover it in this book. The toString() method of Thread prints
these three details, so see Listing 13-4 for a simple program to get these details.

Listing 13-4. SimpleThread.java

class SimpleThread {
 public static void main(String []s) {
 Thread t = new Thread();
 System.out.println(t);
 }
}

This program prints the following:

Thread[Thread-0,5,main]

Thread is the name of the class. Within “[“ and ”]” is the name of the thread, its priority, and the thread group.
You did not give any name to the thread, so the default name Thread-0 was given (as you create more threads, threads
will be given names like Thread-1, Thread-2, etc). The default priority is 5. You created the thread in main(), so the
default thread group is “main.”

Now let’s try changing the name and priority of the thread using the setName() and setPriority() methods:

Thread t = new Thread();
t.setName("SimpleThread");
t.setPriority(9);
System.out.println(t);

This code segment prints the following:

Thread[SimpleThread,9,main]

The thread has the name and priority that you gave it. You can change the name of the threads as you wish and it
does not change the behavior of the program. However, you need to be careful in changing thread priority since it can
affect scheduling of threads. You can programmatically access the minimum, normal, and maximum priority of the
threads using the static members MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY , as shown in Listing 13-5.

Listing 13-5. ThreadPriorities.java

class ThreadPriorities {
 public static void main(String []s) {
 System.out.println("Minimum priority of a thread: " + Thread.MIN_PRIORITY);
 System.out.println("Normal priority of a thread: " + Thread.NORM_PRIORITY);
 System.out.println("Maximum priority of a thread: " + Thread.MAX_PRIORITY);
 }
}

Chapter 13 ■ Threads

401

This program prints the following:
 
Minimum priority of a thread: 1
Normal priority of a thread: 5
Maximum priority of a thread: 10

Using the Thread.sleep() Method
Let’s say you want to implement a countdown timer for a time bomb that counts from nine to zero pausing 1 second for
each count. After reaching zero, it should print “Boom!!!” You can implement this functionality by creating a thread to
execute the countdown. In order to pause it for each second, you can call the Thread.sleep method. See Listing 13-6.

Listing 13-6.  TimeBomb.java

 class TimeBomb extends Thread {
 �String [] timeStr = { "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight",

"Nine" };
  
 public void run() {
 for(int i = 9; i > = 0; i--) {
 try {
 System.out.println(timeStr[i]);
 Thread.sleep(1000);
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 }
  
 public static void main(String []s) {
 TimeBomb timer = new TimeBomb();
 System.out.println("Starting 10 second count down. . . ");
 timer.start();
 System.out.println("Boom!!!");
 }
}
 

It prints the following with 1 second pause for printing from Nine to Zero:
 
Starting 10 second count down. . .
Boom!!!
Nine
Eight
Seven
Six
Five
Four
Three
Two
One
Zero
 

Chapter 13 ■ Threads

402

The program didn’t quite work. The message “Boom!!!” got printed even before the countdown started! Before
discussing the cause of this strange behavior, let’s go over the basics of the sleep() method.

You use the static method sleep() available in the Thread class for putting the current thread to sleep (or pause)
for a certain time period. There are two overloaded static sleep() methods in the Thread class:
 
void sleep(long)
void sleep(long, int)
 

The first version of the sleep() method takes milliseconds as an argument. The second version, in addition to
the milliseconds, takes nanoseconds as the second argument.

The sleep() method throws InterruptedException. Since InterruptedException is a checked exception
(it extends from the Exception class), you need to provide a try-catch block around sleep() or declare the
run() method that throws the exception InterruptedException. However, if you declare void run() throws
InterruptedException, you won’t be overriding the run() method since the exception specification is different
(the run() method does not throw any checked exceptions). So, you must provide a try-catch block to handle this
exception within run(). What should you do to handle InterruptedException?

First, you need to understand what InterruptedException means and when it gets thrown. A thread can
“interrupt” another thread, say, to request it to stop working. In that case, the thread receiving the interrupt—if it is
in sleep() or wait() (which we’ll revisit later)—results in throwing an InterruptedException. The thread receiving
the interrupt can ignore the interrupt and continue execution (which is not a good idea, but it is possible to do
so), or it can stop the execution. You will not interrupt other threads in the multi-threaded programs we cover in
this book. So let’s assume that your threads will not get any interrupts, and you’ll ignore the exception and ask the
thread to continue working. In other words, you’ll be consciously ignoring the InterruptedException (after calling
the printStackTrace() method of the exception); however, in real-world programs, you may need to handle this
exception if you use a thread interrupt feature.

Coming back to the program’s output, the message “Boom!!!” gets printed just after printing “Starting 10 second
count down. . . ” and not after counting down to zero. Why did this happen?

The main thread starts the execution of the timer thread by calling timer.start(). The main thread execution is
independent of the execution of the timer thread, so it executes the next statement, which is printing “Boom!!!” to the
console.

But remember that you want the main() method to wait until the timer thread completes. How do you do that?
For that you’ll have to learn how to use the join() method provided in the Thread class.

Using Thread’s Join Method
The Thread class has the instance method join() for waiting for a thread to “die.” In the TimeBomb program, you want
the main() thread to wait for the timer thread to complete its execution. You can use the instance method join()
in the Thread class to achieve that. Here is the improved version of the TimeBomb program, with changes only in the
main() method:
 
public static void main(String []s) {
 TimeBomb timer = new TimeBomb();
 System.out.println("Starting 10 second count down. . . ");
 timer.start();
 try {
 timer.join();
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 System.out.println("Boom!!!");
} 

Chapter 13 ■ Threads

403

Now the program prints the output as expected:
 
Starting 10 second count down. . .
Nine
Eight
Seven
Six
Five
Four
Three
Two
One
Zero
Boom!!!
 

The Thread class has three overloaded versions of the join() method:
 
void join();
void join(long);
void join(long, int);
 

If the current thread invokes join() (the first overloaded version listed here) on an instance of another thread,
then the current thread waits indefinitely for that other thread to die. The next two overloaded methods take a
“timeout” period as an argument; the current thread will wait for the other thread to die only until the timeout period
expires. The current thread will continue execution in case the other thread doesn’t complete before that timeout
period. The second method takes the timeout period in milliseconds (long type value) and the third overloaded
version takes both milliseconds as well as nanoseconds (long and int type values).

The join() method also throws InterruptedException; you’ll ignore this exception for the same reasons
discussed for the sleep() method earlier in this chapter.

Asynchronous Execution
In the previous program, you saw that the main thread and the thread that you created execute independently.
In other words, threads run asynchronously. Threads do not run sequentially (like function calls), so the order of
execution of threads is not predictable—in other words, thread behavior is non-deterministic in nature. To understand
this, consider Listing 13-7.

Listing 13-7.  AsyncThread.java

 class AsyncThread extends Thread {
 public void run() {
 System.out.println("Starting the thread " + getName());
 for(int i = 0; i < 3; i++) {
 System.out.println("In thread " + getName() + "; iteration " + i);
 try {
 // sleep for sometime before the next iteration
 Thread.sleep(10);
 }
 catch(InterruptedException ie) {
 // we're not interrupting any threads

Chapter 13 ■ Threads

404

 // – so safe to ignore this exeception
 ie.printStackTrace();
 }
 }
 }
  
 public static void main(String args[]) {
 AsyncThread asyncThread1 = new AsyncThread();
 AsyncThread asyncThread2 = new AsyncThread();
 // start both the threads around the same time
 asyncThread1.start();
 asyncThread2.start();
 }
}
 

In Listing 13-7, the run() method has a for loop that iterates three times. In the for loop, you print the name of
the thread and the iteration number. After printing this info, you force the current thread to sleep for 10 milliseconds.

In one sample run, the output was the following:
 
Starting the thread Thread-0
Starting the thread Thread-1
In thread Thread-1; iteration 0
In thread Thread-0; iteration 0
In thread Thread-1; iteration 1
In thread Thread-0; iteration 1
In thread Thread-0; iteration 2
In thread Thread-1; iteration 2 

In another sample run, the output was the following: 

Starting the thread Thread-0
Starting the thread Thread-1
In thread Thread-1; iteration 0
In thread Thread-0; iteration 0
In thread Thread-1; iteration 1
In thread Thread-0; iteration 1
In thread Thread-1; iteration 2
In thread Thread-0; iteration 2
 

As you can see, the output for these two runs is slightly different (see the italicized part in the outputs)! Why?
The threads Thread-0 and Thread-1 are executed independently. The output is not fixed and the execution order

of the iterations in the threads is not predictable. A programmer cannot determine the execution order of the threads.
The underlying platform may use any one of the multiple processors or time-slice a single processor to allot CPU
time for a thread. This cannot be controlled by the JVM or the programmer. This is one of the fundamental and most
important concepts to understand in multi-threading.

  You can neither predict nor control the order of execution of threads!

Chapter 13 ■ Threads

405

 �Since behavior of multi-threaded programs is non-deterministic, you must be careful in writing
multi-threaded programs. You cannot expect pre-determined output based on the execution order of
threads.

The States of a Thread
A thread has various states during its lifetime. It is important to understand the different states of a thread and
learn to write robust code based on that understanding. You’ll see three thread states—new, runnable and
terminated—which are applicable to almost all threads you will create in this section. We will discuss more
thread states later.

A program can access the state of the thread using Thread.State enumeration. The Thread class has the
getState() instance method, which returns the current state of the thread; see Listing 13-8 for an example.

Listing 13-8.  BasicThreadStates.java

 class BasicThreadStates extends Thread {
 public static void main(String []s) throws Exception {
 Thread t = new Thread(new BasicThreadStates());
 System.out.println("Just after creating thread; \n" +
 " The thread state is: " + t.getState());
 t.start();
 System.out.println("Just after calling t.start(); \n" +
 " The thread state is: " + t.getState());
 t.join();
 System.out.println("Just after main calling t.join(); \n" +
 " The thread state is: " + t.getState());
 }
}
 

This program prints the following:
 
Just after creating thread;
 The thread state is: NEW
Just after calling t.start();
 The thread state is: RUNNABLE
Just after main calling t.join();
 The thread state is: TERMINATED
 

Just after the creation of the thread and just before calling the start() method on that thread, the thread is in the
new state. After calling the start() method, the thread is ready to run or is in the running state (which you cannot
determine), so it is in runnable state. From the main() method, you are calling t.join(). The main() method waits for
the thread t to die. So, once the statement t.join() successfully gets executed by the main() thread, it means that the
thread t has died or terminated. So, the thread is in the terminated state now.

A word of advice: be careful about accessing the thread states using the getState() method. Why? By the time
you acquire information on a thread state and print it, the state could have changed! We know the last statement is

Chapter 13 ■ Threads

406

confusing. To understand the problem with getting thread state information using the getState() method, consider
the previous example. In one sample run of the same program, it printed the following:
 
Just after creating thread;
 The thread state is: NEW
Just after calling t.start();
 The thread state is: TERMINATED
Just after main calling t.join();
 The thread state is: TERMINATED
 

Note the italicized part of the output, the statement after printing “Just after calling t.start();”. In the
initial output, you got the thread state (as expected) as RUNNABLE state. However, in another execution of the same
program without any change, it printed the state as TERMINATED. Why? In this case, the thread is dead before you
could get a chance to check it and print its status! (Note that you have not implemented the run() method in the
BasicThreadStates class, so the default implementation of the run() method does nothing and terminates quickly.)

Every Java thread goes through these three states, as shown in Figure 13-2. Among these, the runnable state
actually consists of two separate states at the operating system level, which we will discuss now.

ready running

timeout

OS dispatches thread

Figure 13-3.  Runnable state implemented as two states in the OS level

Two States in “Runnable” State
Once a thread makes the state transition from the new state to the runnable state, you can think of the thread having
two states at the OS level: the ready state and running state. A thread is in the ready state when it is waiting for the OS
to run it in the processor. When the OS actually runs it in the processor, it is in the running state. There might be many
threads waiting for processor time. The current thread may end up taking lots of time and finally may give up the CPU
voluntarily. In that case, the thread again goes back to the ready state. These two states are shown in Figure 13-3.

Thread got started

new

runnable

terminated

Thread completed its task

Figure 13-2.  Basic states in the life of a thread

Chapter 13 ■ Threads

407

Concurrent Access Problems
Concurrent programming in threads is fraught with pitfalls and problems. We will discuss two main concurrent access
problems—data races and deadlocks—in this section.

Data Races
Threads share memory, and they can concurrently modify data. Since the modification can be done at the same time
without safeguards, this can lead to unintuitive results.

When two or more threads are trying to access a variable and one of them wants to modify it, you get a problem
known as a data race (also called as race condition or race hazard). Listing 13-9 shows an example of a data race.

Listing 13-9.  DataRace.java

 // This class exposes a publicly accessible counter
// to help demonstrate data race problem
class Counter {
 public static long count = 0;
}
 
// This class implements Runnable interface
// Its run method increments the counter three times
class UseCounter implements Runnable {
 public void increment() {
 // increments the counter and prints the value
 // of the counter shared between threads
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
 public void run() {
 increment();
 increment();
 increment();
 }
}
 
// This class creates three threads
public class DataRace {
 public static void main(String args[]) {
 UseCounter c = new UseCounter();
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 Thread t3 = new Thread(c);
 t1.start();
 t2.start();
 t3.start();
 }
}
 

In this program, there is a Counter class that has a static variable count. In the run() method of the UseCounter
class, you increment the count three times by calling the increment() method. You create three threads in the main()
function in the DataRace class and start it. You expect the program to print 1 to 9 sequentially as the threads run and

Chapter 13 ■ Threads

408

increment the counters. However, when you run this program, it does print nine integer values, but the output looks
like garbage! In a sample run, we got these values:
 
3 3 5 6 3 7 8 4 9
 

Note that the values will usually be different every time you run this program; when we ran it two more times, we
got these outputs:
 
3 3 5 6 3 4 7 8 9
 
3 3 3 6 7 5 8 4 9
 

So, what is the problem?
The expression Counter.count++ is a write operation, and the next System.out.print statement has a read

operation for Counter.count. When the three threads execute, each of them has a local copy of the value Counter.count
 and when they update the counter with Counter.count++, they need not immediately reflect that value in the main
memory (see Figure 13-4). In the next read operation of Counter.count, the local value of Counter.count is printed.

Counter.count

thread t1 tries
Counter.count++

thread t3 tries
Counter.count++

thread t2 tries
Counter.count++

Figure 13-4.  Threads t1, t2, and t3 trying to change Counter.count, causing a data race

Therefore, this program has a data race problem. To avoid this problem, you need to ensure that a single thread
does the write and read operations together (atomically). The section of code that is commonly accessed and
modified by more than one thread is known as critical section. To avoid the data race problem, you need to ensure that
the critical section is executed by only one thread at a time.

How do you do that? By acquiring a lock on the object. Only a single thread can acquire a lock on an object at a
time, and only that thread can execute the block of code (i.e., the critical section) protected by the lock. Until then,
the other threads have to wait. Internally, this is implemented with monitors and the process is called locking and
unlocking (i.e., thread synchronization). Let’s discuss this in more detail.

Thread Synchronization
Java has a keyword, synchronized, that helps in thread synchronization. You can use it in two forms—synchronized
blocks and synchronized methods.

Chapter 13 ■ Threads

409

Synchronized Blocks
In synchronized blocks, you use the synchronized keyword for a reference variable and follow it by a block of code.
A thread has to acquire a lock on the synchronized variable to enter the block; when the execution of the block
completes, the thread releases the lock. For example, you can acquire a lock on this reference if the block of code is
within a non-static method:
 
synchronized(this) {
 // code segment guarded by the mutex lock
}
 

What if an exception gets thrown inside the synchronized block? Will the lock get released? Yes, no matter
whether the block is executed fully or an exception is thrown, the lock will be automatically released by the JVM.

With synchronized blocks, you can acquire a lock on a reference variable only. If you use a primitive type, you will
get a compiler error.
 
int i = 10;
synchronized(i) { /* block of code here*/}
 

For this code, you will get the following compiler error:
 
Lock.java:5: int is not a valid type's argument for the synchronized statement
found : int
required: reference
 synchronized(i) { /* block of code here*/}
 

Here is an improved version of the program discussed in the previous section that performs synchronized access
to Counter.count and does both read and write operations on that in a critical section. For that, you need to change
only the increment method, as in
  
public void increment() {
 // These two statements perform read and write operations
 // on a variable that is commonly accessed by multiple threads.
 // So, acquire a lock before processing this "critical section"
 synchronized(this) {
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
}
 

Now the program prints the expected output correctly:
 
1 2 3 4 5 6 7 8 9
 

In the increment() method, you acquire a lock on the this reference before reading and writing to Counter.count.
So, it is not possible for more than one thread to execute these statements at the same time. Since only one thread can
acquire a lock and execute the “critical section” code block, the counter is incremented by only one thread at a given
time; as a result, the program prints the values 1 to 9 correctly (without the data race problem).

Chapter 13 ■ threads

410

Synchronized Methods
An entire method can be declared synchronized. In that case, when the method declared as synchronized is called, a
lock is obtained on the object on which the method is called, and it is released when the method returns to the caller.
Here is an example:

public synchronized void assign(int i) {
 val = i;
}

Now the assign() method is a synchronized method. If you call the assign() method, it will acquire the lock on
the this reference implicitly and then execute the statement val = i;. What happens if some other thread acquired
the lock already? Just like synchronized blocks, if the thread cannot get the lock, it will be blocked and the thread will
wait until the lock becomes available.

A synchronized method is equivalent to a synchronized block if you enclose the whole method body in a
synchronized(this) block. So, the equivalent assign() method using synchronized blocks is

public void assign() {
 synchronized(this) {
 val = i;
 }
}

You can declare static methods synchronized. However, what is the reference variable on which the lock is
obtained? Remember that static methods do not have the implicit this reference. Static synchronized methods
acquire locks on the class object. Every class is associated with an object of Class type, and you can access it using
ClassName.class syntax. For example,

class SomeClass {
 private static int val;
 public static synchronized void assign(int i) {
 val = i;
 }
 // more members . . .
}

In this case, the assign method acquires a lock on the SomeClass.class object when it is called. Now the
equivalent assign() method using synchronized blocks can be written as

class SomeClass {
 private static int val;
 public static void assign(int i) {
 synchronized(SomeClass.class) {
 val = i;
 }
 }
 // more members . . .
}

Chapter 13 ■ Threads

411

You cannot declare constructors synchronized; it will result in a compiler error. For example, for
 
class Synchronize {
 public synchronized Synchronize() { /* constructor body */}
 // more methods
}
 
you get this error:
 
Synchronize.java:2: modifier synchronized not allowed here
 public synchronized Synchronize() { /* constructor body */}
 

Why can’t you declare constructors synchronized? The JVM ensures that only one thread can invoke a
constructor call (for a specific constructor) at a given point in time. So, there is no need to declare a constructor
synchronized. However, if you want, you can use synchronized blocks inside constructors.

Let’s get back to the Counter example. The increment() method can be rewritten as a synchronized method also:
 
// declaring the increment synchronized instead of using
// a synchronized statement for a block of code inside the method
public synchronized void increment() {
 Counter.count++;
 System.out.print(Counter.count + " ");
}
 

Now the program prints the expected output correctly:
 
1 2 3 4 5 6 7 8 9
 

In this case, increment() is an instance method. What about static methods? First, let’s look at the data race
problem when the increment() method is a static method; see Listing 13-10.

Listing 13-10.  DataRace.java

 class Counter {
 public static long count = 0;
}
 
class UseCounter implements Runnable {
 public static void increment() {
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
 public void run() {
 increment();
 increment();
 increment();
 }
}
 

Chapter 13 ■ Threads

412

public class DataRace {
 public static void main(String args[]) {
 UseCounter c = new UseCounter();
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 Thread t3 = new Thread(c);
 t1.start();
 t2.start();
 t3.start();
 }
}
 

Yes, this program has the data race problem. To fix it, you can declare the static increment method as
synchronized, as in
 
public static synchronized void increment() {
 Counter.count++;
 System.out.print(Counter.count + " ");
}
 

With this change, the program does not have the data race problem.

Beginners commonly misunderstand that a synchronized block obtains a lock for a block of code.
Actually, the lock is obtained for an object and not for a piece of code. The obtained lock is held until all
the statements in that block complete execution.

Synchronized Blocks vs. Synchronized Methods

As you can see from the previous discussion on synchronized blocks and synchronized methods, you can use either
of them to solve the data race problem. So which one should you choose? As in other language features, you need to
choose between synchronized methods and blocks depending on the needs of a particular situation. Here are some
factors for consideration.

If you want to acquire a lock on an object for only a small block of code and not the whole method, then
synchronized blocks are sufficient; using synchronized methods is overkill in that case. In general, it is better to
acquire locks for small segments of code instead of locking methods unnecessarily, so synchronized blocks are useful
there. In synchronized blocks, you can explicitly provide the reference object on which you want to acquire a lock.
However, in the case of a synchronized method, you do not provide any explicit reference to acquire a lock on.
A synchronized method acquires an implicit lock on the this reference (for instance methods) and class object
(for static methods).

On the other hand, if you want to acquire a lock on the entire body of a small method, then using synchronized as a
method attribute is more elegant and convenient than synchronized blocks. In synchronized methods, while reading the
declaration of the method itself, it becomes clear that a method is synchronized; with synchronized blocks, you need to
read the documentation or look inside the code to understand that some synchronization is performed.

Chapter 13 ■ Threads

413

Deadlocks
Obtaining and using locks is tricky, and it can lead to lots of problems. One of the difficult (and common) problems is
known as a deadlock. There are other problems such as livelocks and lock starvation, which we’ll briefly discuss in the
next section.

A deadlock arises when locking threads result in a situation where they cannot proceed and thus wait indefinitely
for others to terminate. Say, one thread acquires a lock on resource r1 and waits to acquire another on resource r2. At
the same time, say there is another thread that has already acquired r2 and is waiting to obtain a lock on r1. Neither of
the threads can proceed until the other one releases the lock, which never happens—so they are stuck in a deadlock.

Listing 13-11 shows how this situation can arise (using the example from the Cricket game).

Listing 13-11.  DeadLock.java

 // Balls class has a globally accessible data member to hold the number of balls thrown so far
class Balls {
 public static long balls = 0;
}
 
// Runs class has a globally accessible data member to hold the number of runs scored so far
class Runs {
 public static long runs = 0;
}
 
// Counter is a thread class that has two methods – IncrementBallAfterRun and
// IncrementRunAfterBall.
// For demonstrating deadlock, we call these two methods in the run method,
// so that locking can be requested in opposite order in these two methods
class Counter implements Runnable {
 // this method increments runs variable first and then increments the balls variable
 // since these variables are accessible from other threads,
 // we need to acquire a lock before processing them
 public void IncrementBallAfterRun() {
 // since we're updating runs variable first, lock the Runs.class reference first
 synchronized(Runs.class) {
 // now acquire lock on Balls.class variable before updating balls variable
 synchronized(Balls.class) {
 Runs.runs++;
 Balls.balls++;
 }
 }
 }
 
 public void IncrementRunAfterBall() {
 // since we're updating balls variable first, lock the Balls.class reference first
 synchronized(Balls.class) {
 // now acquire lock on Runs.class variable before updating runs variable
 synchronized(Runs.class) {
 Balls.balls++;
 Runs.runs++;
 }
 }
 }
 

Chapter 13 ■ Threads

414

 public void run() {
 // call these two methods which acquire locks in different order
 // depending on thread scheduling and the order of lock acquision,
 // a deadlock may or may not arise
 IncrementBallAfterRun();
 IncrementRunAfterBall();
 }
}
 
public class DeadLock {
 public static void main(String args[]) throws InterruptedException {
 Counter c = new Counter();
 // create two threads and start them at the same time
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 t1.start();
 t2.start();
 System.out.println("Waiting for threads to complete execution. . .");
 t2.join();
 t2.join();
 System.out.println("Done.");
 }
}

If you execute this program, the program might run fine, or it might deadlock and never terminate (the
occurrence of deadlock in this program depends on how threads are scheduled).
 
D:\ > java DeadLock
Waiting for threads to complete execution. . .
Done.
 
D:\ > java DeadLock
Waiting for threads to complete execution. . .
Done.
 
D:\ > java DeadLock
Waiting for threads to complete execution. . .
[deadlock – user pressed ctrl + c to terminate the program]
 
D:\ > java DeadLock
Waiting for threads to complete execution. . .
Done.
 

In this example, there are two classes, Balls and Runs, with static members called balls and runs. The Counter
class has two methods, IncrementBallAfterRun() and IncrementRunAfterBall(). They acquire locks on the
Balls.class and Runs.class in the opposite order. The run() method calls these two methods consecutively.
The main() method in the Dead class creates two threads and starts them.

When the threads t1 and t2 execute, they invoke the methods IncrementBallAfterRun and
IncrementRunAfterBall. In these methods, locks are obtained in opposite order. It might happen that t1 acquires a
lock on Runs.class and then waits to acquire a lock on Balls.class. Meanwhile, t2 might have acquired the
Balls.class and now will be waiting to acquire a lock on the Runs.class. Therefore, this program can lead to a
deadlock (Figure 13-5).

Chapter 13 ■ Threads

415

It cannot be assured that this program will lead to a deadlock every time you execute this program. Why? You
never know the sequence in which threads execute and the order in which locks are acquired and released. For this
reason, such problems are said to be non-deterministic, and such problems cannot be reproduced consistently.

There are different strategies to deal with deadlocks, such as deadlock prevention, avoidance, or detection. For
exam purposes, this is what you need to know about deadlocks:

Deadlocks can arise in the context of multiple locks.•	

If multiple locks are acquired in the same order, then a deadlock will not occur; however, if •	
you acquire them in a different order, then deadlocks may occur.

Deadlocks (just like other multi-threading problems) are non-deterministic; you cannot •	
consistently reproduce deadlocks.

 Avoid acquiring multiple locks. If you want to acquire multiple locks, make sure that they are acquired in
the same order everywhere to avoid deadlocks.

Other Threading Problems
So far we discussed data races and deadlocks with examples. We’ll now briefly discuss two more threading problems:
livelocks and lock starvation.

Livelocks
To help understand livelocks, let’s consider an analogy. Assume that there are two robotic cars that are programmed
to automatically drive in the road. There is a situation where two robotic cars reach the two opposite ends of a narrow
bridge. The bridge is so narrow that only one car can pass through at a time. The robotic cars are programmed such
that they wait for the other car to pass through first. When both the cars attempt to enter the bridge at the same time,
the following situation could happen: each car starts to enter the bridge, notices that the other car is attempting to do
the same, and reverses! Note that the cars keep moving forward and backward and thus appear as if they’re doing lots
of work, but there is no progress made by either of the cars. This situation is called a livelock.

Consider two threads t1 and t2. Assume that thread t1 makes a change and thread t2 undoes that change. When
both the threads t1 and t2 work, it will appear as though lots of work is getting done, but no progress is made. This
situation is called a livelock in threads.

t1 acquires lock on Balls.class.

t2 waiting to lock
on Balls.class.

t2 acquired lock
on Runs.class.

t1 waiting to lock
on Runs.class. Runs.class

Balls.class

Figure 13-5.  Deadlock between threads t1 and t2

Chapter 13 ■ Threads

416

The similarity between livelocks and deadlocks is that the process “hangs” and the program never terminates.
However, in a deadlock, the threads are stuck in the same state waiting for other thread(s) to release a shared
resource; in a livelock, the threads keep executing a task, and there is continuous change in the process states, but the
application as a whole does not make progress.

Lock Starvation
Consider the situation in which numerous threads have different priorities assigned to them (in the range of lowest
priority, 1, to highest priority, 10, which is the range allowed for priority of threads in Java). When a mutex lock is
available, the thread scheduler will give priority to the threads with high priority over low priority. If there are many
high-priority threads that want to obtain the lock and also hold the lock for long time periods, when will the low-priority
threads get a chance to obtain the lock? In other words, in a situation where low-priority threads “starve” for a long
time trying to obtain the lock is known as lock starvation.

There are many techniques available for detecting or avoiding threading problems like livelocks and starvation,
but they are not within the scope of OCPJP7 exam. From the exam perspective, you are expected to know the different
kinds of threading problems that we’ve already covered in this chapter.

The Wait/Notify Mechanism
In multi-threaded programs, often there is a need for one thread to communicate to another thread. The wait/notify
mechanism is useful when threads must communicate in order to provide a functionality.

Let’s take the example of a coffee shop. A waiter is using a coffee machine in a coffee shop and delivering coffee
to customers. The coffee machine in this coffee shop is an antique machine: it makes one cup of coffee at a time,
and it takes five to ten minutes time to make a cup. The waiter does not have to be idle while waiting for the coffee
machine to complete making coffee; he can go to customers in the meantime to deliver the coffee prepared earlier.
This example is a little contrived, though: assume that coffee machine keeps making the coffee and waiter keeps
delivering it.

The method wait() allows the calling thread to wait for the wait object (on which wait() is called). In other
words, if you want to make a thread wait for another thread, you can ask it to wait for the wait object using the wait()
method. A thread remains in the wait state until some another thread calls the notify() or notifyAll() method
on the wait object. To understand the wait/notify mechanism, you are going to simulate this coffee shop situation in
a program. You can implement the coffee machine as one thread and the waiter as another thread in two different
classes. The coffee machine can notify the waiter to take the coffee, and it can wait until the waiter has taken the
coffee from the tray. Similarly, the waiter can take the coffee if it is available and notify the coffee machine to make
another cup.

Explaining the wait/notify mechanism with an example involves quite a bit of code. But this is an interesting
example to illustrate this concept, so read on. Listing 13-12 contains the CoffeeMachine class.

Listing 13-12.  CoffeeMachine.java

 // The CoffeeMachine class runs as an independent thread.
// Once the machine makes a coffee, it notifies the waiter to pick it up.
// When the waiter asks the coffee machine to make a coffee again,
// it starts all over again, and this process keeps goes on . . .
class CoffeeMachine extends Thread {
 static String coffeeMade = null;
 static final Object lock = new Object();
 private static int coffeeNumber = 1;
 void makeCoffee() {
 synchronized(CoffeeMachine.lock) {
 if(coffeeMade ! = null) {

Chapter 13 ■ Threads

417

 try {
 �System.out.println("Coffee machine: Waiting for waiter

notification to deliver the coffee");
 CoffeeMachine.lock.wait();
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 coffeeMade = "Coffee No. " + coffeeNumber ++;
 System.out.println("Coffee machine says: Made " + coffeeMade);
 // once coffee is ready, notify the waiter to pick it up
 CoffeeMachine.lock.notifyAll();
 System.out.println("Coffee machine: Notifying waiter to pick the coffee ");
 }
 }
 
 public void run() {
 while(true) {
 makeCoffee();
 try {
 System.out.println("Coffee machine: Making another coffee now");
 // simulate the time taken to make a coffee by calling sleep method
 Thread.sleep(10000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception
 // since we're not using thread interrupt mechanism
 ie.printStackTrace();
 }
 }
 }
}
 

The CoffeeMachine object is going to run as a thread, so it extends the Thread class and implements the run()
method. The run() method goes on forever and keeps calling the makeCoffee() method. For each iteration, it calls
sleep() for ten seconds to simulate the time taken for the coffee machine to make the coffee.

The CoffeeMachine has three static members. The coffeeMade member has the string description for the coffee
that it has made. The lock member is for the synchronization between the CoffeeMachine and Waiter threads. The
numOfCoffees is used internally by the makeCoffee() method to get the description of the coffee made.

The makeCoffee() method does most of the work. The first thing it does is acquire the lock CoffeeMachine.lock
using the synchronized keyword. Inside the block, it checks if the coffeeMade is null or not. The first time the
CoffeeMachine thread calls the makeCoffee() method, coffeeMade will be null. In other cases, it is the Waiter thread
that makes coffeeMade null and notifies (using the notifyAll() method) the CoffeeMachine thread. If the Waiter
thread hasn’t cleared it yet, it goes to the wait() state and prints the message, “Waiting for waiter notification to
deliver the coffee”.

Once the Waiter notifies the CoffeeMachine thread, the machine delivers the next coffee to the waiter; it prints
the message notifying the waiter to pick up the coffee. Now let’s look at the Waiter class (see Listing 13-13).

Chapter 13 ■ Threads

418

Listing 13-13.  Waiter.java

 // The Waiter runs as an independent thread
// It interacts with the CoffeeMachine to wait for a coffee
// and deliver the coffee once ready and request the coffee machine
// for the next one, and this activity keeps going on forever . . .
class Waiter extends Thread {
 public void getCoffee() {
 synchronized(CoffeeMachine.lock) {
 if(CoffeeMachine.coffeeMade == null) {
 try {
 // wait till the CoffeeMachine says (notifies) that
 // coffee is ready
 System.out.println("Waiter: Will get orders till
 coffee machine notifies me ");
 CoffeeMachine.lock.wait();
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception
 // since we're not using thread interrupt mechanism
 ie.printStackTrace();
 }
 }
 System.out.println("Waiter: Delivering " + CoffeeMachine.coffeeMade);
 CoffeeMachine.coffeeMade = null;
 // ask (notify) the coffee machine to prepare the next coffee
 CoffeeMachine.lock.notifyAll();
 System.out.println("Waiter: Notifying coffee machine to make another one");
 }
 }
  
 public void run() {
 // keep going till the user presses ctrl-C and terminates the program
 while(true) {
 getCoffee();
 }
 }
}
 

The Waiter class also extends the Thread since a Waiter object is going to run as a thread as well. It has a run()
method and it does something very simple: it keeps calling the getCoffee() method forever.

The Waiter class has the getCoffee() method where most of the work is done. The first thing the method does is
try to acquire a lock on CoffeeMachine.lock. Once it gets the lock, it checks if the coffeeMade is null. If the variable
is null, it means the CoffeeMachine thread is still preparing the coffee. In that case, the Waiter thread calls wait()
and then prints the message, “Will get orders till coffee machine notifies me”. When the CoffeeMachine thread has
made the coffee, it will set the variable coffeeMade, and it will be non-null then; that thread will also notify the Waiter
thread using notifyAll().

Once the Waiter thread gets notified, it can deliver the coffee to the customer; it prints the message “Delivering
coffee”. After that, it clears the coffeeMade variable to null and notifies the CoffeeMachine to make another coffee
(“Notifying coffee machine to make another one”). Listing 13-14 shows the CoffeeShop class.

Chapter 13 ■ Threads

419

Listing 13-14.  CoffeeShop.java

 // This class instantiates two threads - CoffeeMachine and Waiter threads
// and these two threads interact with each other through wait/notify
// till you terminate the application explicitly by pressing Ctrl-C
class CoffeeShop {
 public static void main(String []s) {
 CoffeeMachine coffeeMachine = new CoffeeMachine();
 Waiter waiter = new Waiter();
 coffeeMachine.start();
 waiter.start();
 }
}
 

What the main() method in the CoffeeShop class does is trivial: it creates CoffeeMachine and Waiter threads
and starts them. Now, these two threads communicate with each other and go on forever. The program output looks
like this:
 
Coffee machine says: Made Coffee No. 1
Coffee machine: Notifying waiter to pick the coffee
Coffee machine: Making another coffee now
Waiter: Delivering Coffee No. 1
Waiter: Notifying coffee machine to make another one
Coffee machine says: Made Coffee No. 2
Coffee machine: Notifying waiter to pick the coffee
Coffee machine: Making another coffee now
Waiter: Will get orders till coffee machine notifies me
Waiter: Delivering Coffee No. 2
Waiter: Notifying coffee machine to make another one
Coffee machine says: Made Coffee No. 3
Coffee machine: Notifying waiter to pick the coffee
Coffee machine: Making another coffee now
Waiter: Will get orders till coffee machine notifies me
Waiter: Delivering Coffee No. 3
Waiter: Notifying coffee machine to make another one
 
// goes on forever until you press Ctrl-C to terminate the application. . .

Should you use notify() or notifyAll()?

You have two methods—notify() and notifyAll()—for notifying (i.e., for waking up a waiting thread in the
Thread class). But which one should you use?

Let‘s examine the subtle difference between these two calls. The notify() method wakes up one thread waiting
for the lock (the first thread that called wait() on that lock). The notifyAll() method wakes up all the threads
waiting for the lock; the JVM selects one of the threads from the list of threads waiting for the lock and wakes
that thread up.

Chapter 13 ■ threads

420

In the case of a single thread waiting for a lock, there is no significant difference between notify() and
notifyAll(). however, when there is more than one thread waiting for the lock, in both notify() and
notifyAll(), the exact thread woken up is under the control of the JVM and you cannot programmatically
control waking up a specific thread.

at first glance, it appears that it is a good idea to just call notify() to wake up one thread; it might seem
unnecessary to wake up all the threads. however, the problem with notify() is that the thread woken up might
not be the suitable one to be woken up (the thread might be waiting for some other condition, or the condition
is still not satisfied for that thread etc). In that case, the notify() might be lost and no other thread will wake
up potentially leading to a type of deadlock (the notification is lost and all other threads are waiting for
notification—forever!).

to avoid this problem, it is always better to call notifyAll() when there is more than one thread waiting for a
lock (or more than one condition on which waiting is done). the notifyAll() method wakes up all threads, so it
is not very efficient. however, this performance loss is negligible in real world applications.

 prefer notifyAll() to notify().

Using notify()/notifyAll() will wake up only threads waiting on the lock on which it is called; it will
not wake up any other threads. If by mistake you use wait() on one lock and notify()/notifyAll() on
another lock, the waiting thread will never get notified and the program will hang (leading to one kind of
deadlock situation)!

Let’s Solve a Problem
Since the wait/notify mechanism is important to understand, let’s take another example and try to understand it more
rigorously.

Problem Statement: Assume that you need to implement a dice player game. This is a two player
game (say the players are “Joe” and “Jane”) where the players throw the dice on their turns. When
one player throws the dice, another player waits. Once the player completes throwing, he/she
informs the other player to play; after that, he/she starts waiting for the other player to throw the
dice. You need to implement these two players as two threads working together. The game ends after
each player throws 6 times (so there will be a total of 12 throws in the game).

Since the problem statement says “implement these two players as two threads working together,” your solution
is a multi-threaded program with each player implemented as a thread. The problem also states that when one player
throws the dice, another waits. So, you should perhaps use a wait/notify mechanism. The dice rolling should result in
a random value, so you can use the Random class for creating random numbers from 1 to 6.

Chapter 13 ■ Threads

421

Here is a solution. First go through the whole program (Listing 13-15), and then you’ll see the explanation of how
it works.

Listing 13-15.  DiceGame.java

 import java.util.Random;
 
// the Gamers class just holds the name of players who roll the dice
class Gamers {
 // prevent instantiating this utility class by making constructor private
 private Gamers() {}
 public static final String JOE = "Joe";
 public static final String JANE = "Jane";
}
 
// the Dice class abstracts how the dice rolls and who plays it
class Dice {
 // to remember whose turn it is to roll the dice
 private static String turn = null;
 synchronized public static String getTurn() { return turn; }
 synchronized public static void setTurn(String player) { turn = player; }
  
 // which player starts the game
 public static void setWhoStarts(String name) { turn = name; }
  
 // prevent instantiating the class by making it private (we've only static members)
 private Dice() { }
 
 // when we roll the dice, it should give a random result
 private static Random random = new Random();
 // random.nextInt(6) gives values from 0 to 5, so add 1 to result in roll()
 public static int roll() { return random.nextInt(6) + 1; }
}
 
// the class Player abstracts a player playing the Dice game
// each player runs as a separate thread, so Player extends Thread class
class Player extends Thread {
 private String currentPlayer = null;
 private String otherPlayer = null;
  
 public Player(String thisPlayer) {
 currentPlayer = thisPlayer;
 // we've only two players; we remember them in currentPlayer and otherPlayer
 otherPlayer = thisPlayer.equals(Gamers.JOE) ? Gamers.JANE: Gamers.JOE;
 }
  
 public void run() {
 // each player rolls the dice 6 times in the game
 for(int i = 0; i < 6; i++) {
 // acquire the lock before proceeding
 synchronized(Dice.class) {

Chapter 13 ■ Threads

422

 // if its not currentPlayer's turn, then
 // wait for otherPlayers's notification
 while(!Dice.getTurn().equals(currentPlayer)) {
 try {
 Dice.class.wait(1000);
 System.out.println(currentPlayer +
 " was waiting for " + otherPlayer);
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 // its currentPlayer's turn now; throw the dice
 System.out.println(Dice.getTurn() + " throws " + Dice.roll());
 // set the turn to otherPlayer, and notify the otherPlayer
 Dice.setTurn(otherPlayer);
 Dice.class.notifyAll();
 }
 }
 }
}
 
// class DiceGame just starts the game by starting player threads
class DiceGame {
 public static void main(String []s) {
 Player player1 = new Player(Gamers.JANE);
 Player player2 = new Player(Gamers.JOE);
 // don't forget to set who starts the game
 Dice.setWhoStarts(Gamers.JOE);
 player1.start();
 player2.start();
 }
}
 

When you run the program, the sample output will be like this:
 
Joe throws 2
Jane was waiting for Joe
Jane throws 5
Joe throws 6
Jane was waiting for Joe
Jane throws 1
Joe throws 2
Jane was waiting for Joe
Jane throws 6
Joe throws 6
Jane was waiting for Joe
Jane throws 5
Joe was waiting for Jane
Joe throws 5
Jane was waiting for Joe

Chapter 13 ■ Threads

423

Jane throws 4
Joe was waiting for Jane
Joe throws 4
Jane was waiting for Joe
Jane throws 5
 

Now, let’s look at the code in more detail to understand how it works.
 
// the Gamers class just holds the name of players who roll the dice
class Gamers {
 // prevent instantiating this utility class by making constructor private
 private Gamers() {}
 public static final String JOE = "Joe";
 public static final String JANE = "Jane";
}
 

The class Gamers is just a utility class that holds the name of the players (Joe and Jane). Since there is no need to
instantiate the class, you declare the constructor private.

The class Dice abstracts how the dice are rolled; it also remembers the turns that the players take.
 
class Dice {
 // to remember whose turn it is to roll the dice
 private static String turn = null;
 synchronized public static String getTurn() { return turn; }
 synchronized public static void setTurn(String player) { turn = player; }
  
 // which player starts the game
 public static void setWhoStarts(String name) { turn = name; }
  
 // prevent instantiating the class by making it private (we've only static members)
 private Dice() { }
 
 // when we roll the dice, it should give a random result
 private static Random random = new Random();
 // random.nextInt(6) gives values from 0 to 5, so add 1 to result in roll()
 public static int roll() { return random.nextInt(6) + 1; }
}
 

You have a member named turn of type String. This variable holds the name of the current player whose turn
has come to roll the dice. The method getTurn() and setTurn() are getter and setter methods for this member. When
the game starts, you should say who should start the game (you need to set turn to a proper initial value); you do it by
calling setWhoStarts. All the members in the class are static, so there is no need to instantiate the class; you enforce
this by making the constructor private.

The dice rolling should result in a random value in the range 1 to 6. You can use the Random class in the java.util package
to get the random number. The Random class has an instance method of nextInt() that you can use to get the range of values
you want. If you pass int value 6 to nextInt, it returns the values from 0 to 5, so you add 1 to get the value ranging from 1 to 6.

The Player class is where you do most of the work. The class Player abstracts a player playing the Dice game.
Each player runs as a separate thread, so Player extends the Thread class. Alternatively, you could implement
Player by implementing the Runnable interface. Both are equivalent and acceptable solutions.

class Player extends Thread {
 private String currentPlayer = null;
 private String otherPlayer = null;
  

Chapter 13 ■ Threads

424

 public Player(String thisPlayer) {
 currentPlayer = thisPlayer;
 // we've only two players; we remember them in currentPlayer and otherPlayer
 otherPlayer = thisPlayer.equals(Gamers.JOE) ? Gamers.JANE: Gamers.JOE;
 }
 // other members
}
  

You create two Player threads for each of the players. So, you remember the values in currentPlayer and
otherPlayer; you set these values in the Player constructor.

Here is the Player's run() method:
 
public void run() {
 // each player rolls the dice 6 times in the game
 for(int i = 0; i < 6; i++) {
 // acquire the lock before proceeding
 synchronized(Dice.class) {
 // if its not currentPlayer's turn, then
 // wait for otherPlayers's notification
 while(!Dice.getTurn().equals(currentPlayer)) {
 try {
 System.out.println(currentPlayer +
 " waiting for " + otherPlayer);
 Dice.class.wait(1000);
 }
 catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 // its currentPlayer's turn now; throw the dice
 System.out.println(Dice.getTurn() +
 " throws " + Dice.roll());
 // set the turn to otherPlayer, and notify the otherPlayer
 Dice.setTurn(otherPlayer);
 Dice.class.notifyAll();
 }
 }
}
 

The run() method will be called for each Player thread. Each player rolls the dice six times, so you have a for
loop with six iterations. In every loop iteration, you check if it’s the currentPlayer's turn to roll the dice. If not, you
make the player thread wait till the otherPlayer informs the currentPlayer that his/her turn has come. Before going
to check the turn, you need to acquire a lock. Any common lock is good, and you use the Dice.class as the lock here.
Once the currentPlayer gets the notification, he/she calls the Dice.roll() method. His/her turn is over now, so he/
she sets the turn to the other player and calls notifyAll() to wake up the otherPlayer thread. You could have used
the notify() method, but it is equally acceptable to use the notifyAll() method, which is better to use.

The DiceGame class does something very simple. It has the main() method and you create the Jane and Joe
player objects. You set one of them to start the game. You call the start() methods for these two player threads to
start playing.

Chapter 13 ■ Threads

425

 If you want a mechanism to wait for a particular event to occur, a wait/notify mechanism is the best
choice. Sometimes programmers solve this problem by using a sleep call, and they repeatedly check
the condition to see if the event has occurred. This is an ineffective solution. Further, calling sleep does
not release the lock (unlike wait), so a solution using sleep is prone to deadlocks. Do not use the sleep
method when a wait/notify mechanism is the appropriate solution.

More Thread States
Earlier in this chapter we discussed three basic thread states: new, runnable and terminated states. In addition to
these states, a thread can also be in blocked, waiting, timed_waiting states, which we’ll discuss now. Figure 13-6 shows
how and when the state transitions typically happen for these six states.

new runnable

terminated

thread dies

blocked

waiting for
acquiring lock

lock acquired

join() or wait()called

notify()/notifyAll()
called

sleep() or join() or
wait() with timeout

timeout completed

waiting

timed_waiting

start()
called

Figure 13-6.  Possible states in the lifetime of a thread

timed_waiting and blocked States
Listing 13-16 contains a simple example to understand timed_waiting and blocked states.

Listing 13-16.  MoreThreadStates.java

 // This Thread class just invokes sleep method after acquiring lock on its class object
class SleepyThread extends Thread {
 public void run() {
 synchronized(SleepyThread.class) {
 try {
 Thread.sleep(1000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not

Chapter 13 ■ Threads

426

 // interrupting exceptions in this code
 ie.printStackTrace();
 }
 }
 }
}
 
// The class creates two threads to show how to these threads will enter into
// TIMED_WAITING and BLOCKED states
class MoreThreadStates {
 public static void main(String []s) {
 Thread t1 = new SleepyThread();
 Thread t2 = new SleepyThread();
 t1.start();
 t2.start();
 System.out.println(t1.getName() + ": I'm in state " + t1.getState());
 System.out.println(t2.getName() + ": I'm in state " + t2.getState());
 }
}
 

It prints the following:
 
Thread-0: I'm in state TIMED_WAITING
Thread-1: I'm in state BLOCKED
 

You have the SleepyThread class with a run() method that just acquires a lock and goes to sleep. You’re creating
two threads, t1 and t2, in the main() method.

When t1 runs, it acquires the lock (SleepyThread.class) and goes to sleep. Remember, when a thread sleeps, it
doesn’t relinquish the lock: it just holds the lock. So sleep() is called for 1 second (1000 milliseconds; the argument
to sleep() is in milliseconds), so the thread t1 is in state TIMED_WAITING.

Meanwhile, the main thread starts t2 thread. When its run() method is called, it finds that it has to acquire the lock
(SleepyThread.class). However, you know that the lock is already acquired by thread t1 and the thread is still sleeping
(and it is in the timed_waiting state). So, thread t2 waits to acquire the lock, hence it is in the blocking state. The main()
method just prints the state of these two threads by calling the getState() method after spawning the threads.

waiting State
The waiting state typically happens when a thread waits for a specific condition to happen by calling the wait()
method. Listing 13-17 is a simple example to illustrate the waiting state.

Listing 13-17.  WaitingThreadState.java

 // This class has run method which waits forever since there is no other thread to notify it
class InfiniteWaitThread extends Thread {
 static boolean okayToRun = false;
 synchronized public void run() {
 while(!okayToRun) {
 try {
 // note the call to wait without any timeout value
 // so it waits forever for some thread to notify it
 wait();
 }

Chapter 13 ■ Threads

427

 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not
 // interrupting exceptions in this code
 ie.printStackTrace();
 }
 }
 }
}
 
class WaitingThreadState {
 public static void main(String []s) {
 Thread t = new InfiniteWaitThread();
 t.start();
 System.out.println(t.getName() + ": I'm in state " + t.getState());
 }
}
 

This program prints the following:
 
Thread-0: I'm in state WAITING
 

You must press Ctrl + C to terminate the thread since the thread waits infinitely for the condition to happen
(i.e., okayToRun to become true). In real world programs, you’ll also write code to have the condition happen; in
other words, you’ll write code to set okayToRun to true and then call notify()/notifyAll(). However, since this is a
dummy program just to illustrate the waiting state, we’re leaving out that part.

What if you change the wait statement inside the run statement to, say, wait(1000)? Now the program will print
TIMED_WAITING. The state timed_waiting happens not just for sleep with timeout that you saw earlier; it also works for
the wait() method call with a timeout value.

Using Thread.State enum
The Thread class defines Thread.State enumeration, which has a list of possible thread states. Listing 13-18 is a
simple program that prints the value of the states in this enumeration.

Listing 13-18.  ThreadStatesEnumeration.java

 class ThreadStatesEnumeration {
 public static void main(String []s) {
 for(Thread.State state : Thread.State.values()){
 System.out.println(state);
 }
 }
}
 

It prints the following:
 
NEW
RUNNABLE
BLOCKED
WAITING
TIMED_WAITING
TERMINATED

Chapter 13 ■ Threads

428

Understanding IllegalThreadStateException
You should be cautious whenever writing code for threads, always keeping in mind the states of the threads.
If you don’t exercise care about the underlying states, what will happen? Let’s look at the simple example in
Listing 13-19 first.

Listing 13-19.  ThreadStateProblem.java

 class ThreadStateProblem {
 public static void main(String []s) {
 Thread thread = new Thread();
 thread.start();
 thread.start();
 }
}
 

The program fails with this stack trace:
 
Exception in thread "main" java.lang.IllegalThreadStateException
 at java.lang.Thread.start(Unknown Source)
 at ThreadStateProblem.main(ThreadStateProblem.java:6)
 

Here, you are trying to start a thread that has already started. When you call start(), the thread moves to the
new state. There is no proper state transition from the new state if you call start() again, so the JVM throws an
IllegalThreadStateException.

 Never call the start() method twice on the same thread.

Can you fix the problem by adding a try-catch block around the second call to start()? That is a bad solution!
IllegalThreadStateException is a RuntimeException, meaning that it indicates a programming error. So, you need
to fix the problem in the program instead of handling it. Even if you provide a try-catch block, what can you do within
the catch block? Nothing; you can leave it empty or just log the exception. Such empty catch blocks are indications of
bad code. So, the correct solution in this case is to make sure that start() is not called again for the same thread.

 Never write a catch block for handling IllegalThreadStateException. If you get this exception, there is
certainly a bug in the code. Fix that bug.

Chapter 13 ■ Threads

429

Listing 13-20 contains another example.

Listing 13-20.  ThreadStateProblem.java

 class ThreadStateProblem extends Thread {
 public void run() {
 try {
 wait(1000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not
 // interrupting exceptions in this code
 ie.printStackTrace();
 }
 }
  
 public static void main(String []s) {
 new ThreadStateProblem().start();
 }
}
 

This program also crashes with IllegalMonitorStateException, like this:
 
Exception in thread "Thread-0" java.lang.IllegalMonitorStateException
 at java.lang.Object.wait(Native Method)
 at ThreadStateProblem.run(ThreadStateProblem.java:4)
 

The wait(int) method (with or without timeout value) should be called only after acquiring a lock: a wait() call
adds the thread to the waiting queue of the acquired lock. If you don’t do that, there is no proper transition from the
running state to timed_waiting (or waiting state, if a timeout value is not given) to happen. So, the program crashes by
throwing an IllegalMonitorStateException exception.

The correct fix is to acquire the lock before calling wait(). In this case, you can declare the run() method
synchronized:
 
synchronized public void run() {
 try {
 wait(1000);
 }
 catch(InterruptedException ie) {
 // its okay to ignore this exception since we're not
 // interrupting exceptions in this code
 ie.printStackTrace();
 }
}
 

Since the run() method is synchronized, wait() will add itself to the this object reference lock. Since there is no
one calling the notify()/notifyAll() method, after a timeout of 1 second (1000 milliseconds) is over, it will return from
the run() method. So, the wait(1000); statement behaves almost like a sleep(1000) statement; the difference is that
calling wait() releases the lock on this object when it waits while sleep() call will not release the lock when it sleeps.

Chapter 13 ■ threads

430

Call wait and notify/notifyAll only after acquiring the relevant lock.

QueStion time!

1. here is a class named PingPong that extends the Thread class. Which of the following PingPong class
implementations correctly prints “ping” from the worker thread and then prints “pong” from the main thread?

a. class PingPong extends Thread {
 public void run() {
 System.out.println("ping ");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 System.out.print("pong");
 }
 }

B. class PingPong extends Thread {
 public void run() {
 System.out.println("ping ");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 pingPong.run();
 System.out.print("pong");
 }
 }

C. class PingPong extends Thread {
 public void run() {
 System.out.println("ping");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 pingPong.start();
 System.out.println("pong");
 }
 }

Chapter 13 ■ Threads

431

D.	 class PingPong extends Thread { 
 public void run() {
 System.out.println("ping");
 }
 public static void main(String []args) throws InterruptedException{
 Thread pingPong = new PingPong();
 pingPong.start();
 pingPong.join();
 System.out.println("pong");
 }
    }
  

Answer: D.

(The main thread creates the worker thread and waits for it to complete (which prints “ping”). After that it
prints “pong”. So, this implementation correctly prints “ping pong”. Why are the other options wrong?

The main() method creates the worker thread, but doesn’t start it. So, this program only prints “pong”.
The program always prints “ping pong”, but it is misleading. This program directly calls the run() method
instead of calling the start() method. So, this is a single threaded program. The main thread and the
worker thread execute independently without any coordination. So, depending on which thread is scheduled
first, you can get “ping pong” or “pong ping” printed.)

2.	 Consider the following program and choose the correct option describing its behavior.
 
class ThreadTest {
 public static void main(String []args) throws InterruptedException {
 Thread t1 = new Thread() {
 public void run() { System.out.print("t1 "); }
 };
 Thread t2 = new Thread() {
 public void run() { System.out.print("t2 "); }
 };
 t1.start();
 t1.sleep(5000);
 t2.start();
 t2.sleep(5000);
 System.out.println("main ");
 }
}
 

A. t1 t2 main

B. t1 main t2

C. main t2 t1

D. This program results in a compiler error.

E. This program throws a runtime error.

Answer: A. t1 t2 main

Chapter 13 ■ Threads

432

( When a new thread is created, it is in the new state. Then, it moves to the runnable state. Only from the
runnable state can the thread go to the timed_waiting state after calling sleep(). Hence, before executing
sleep(), the run() method for that thread is called. So, the program prints “t1 t2 main”.)

3.	� You’ve written an application for processing tasks. In this application, you’ve separated the critical or urgent
tasks from the ones that are not critical or urgent. You’ve assigned high priority to critical or urgent tasks.

In this application, you find that the tasks that are not critical or urgent are the ones that keep waiting for an
unusually long time. Since critical or urgent tasks are high priority, they run most of the time. Which one of
the following multi-threading problems correctly describes this situation?

A. Deadlock

B. Starvation

C. Livelock

D. Race condition

Answer: B. Starvation

( The situation in which low-priority threads keep waiting for a long time to acquire the lock and execute the
code in critical sections is known as starvation.)

4.	 Consider the following program:
 
class ExtendThread extends Thread {
 public void run() { System.out.print(Thread.currentThread().getName()); }
}
 
class ThreadTest{
 public static void main(String []args) throws InterruptedException {
 Thread thread1 = new Thread(new ExtendThread(), "thread1 ");
 Thread thread2 = new Thread(thread1, "thread2 ");
 thread1.start();
 thread2.start();
 thread1.start();	 // START
 }
}
 

Which one of the following correctly describes the behavior of this program?

A. The program prints the following: thread1 thread2 thread1.

B. The program prints the following: thread1 thread1 thread1.

C. The program prints the following: thread1 thread2.

D. The program results in a compiler error for the statement marked with the comment START.

E. �The program throws an IllegalMonitorStateException when executing the statement marked with
the comment START.

Answer: E. The program throws an IllegalMonitorStateException when executing the statement
marked with the comment START.

Chapter 13 ■ Threads

433

(It is illegal to call the start() method more than once on a thread; in that case, the thread will throw an
IllegalMonitorStateException.]

5.	 Which of the following two definitions of Sync (when compiled in separate files) will compile without errors?

A.  class Sync {
 public synchronized void foo() {}
 }
 
B.  abstract class Sync {
 public synchronized void foo() {}
 }
 
C.  abstract class Sync {
 public abstract synchronized void foo();
 }
 
D.  interface Sync {
 public synchronized void foo();
 }
 

Answer: A. and B.

(Abstract methods (in abstract classes or interfaces) cannot be declared synchronized, hence the options C
and D are incorrect.)

Summary
Introduction to Concurrent Programming

You can create classes that are capable of multi-threading by implementing the •	 Runnable
interface or by extending the Thread class.

Always implement the •	 run() method. The default run() method in Thread does nothing.

Call the •	 start() method and not the run() method directly in code. (Leave it to the JVM to
call the run() method.)

Every thread has a thread name, priority, and thread-group associated with it; the default •	
toString() method implementation in Thread prints them.

If you call the •	 sleep() method of a thread, the thread does not release the lock and it holds on
to the lock.

You can use the •	 join() method to wait for another thread to terminate.

In general, if you are not using the “interrupt” feature in threads, it is safe to ignore •	
InterruptedException; however it’s better still to log or print the stack trace if that exception occurs.

Threads execute asynchronously; you cannot predict the order in which the threads run.•	

Threads are also non-deterministic: in many cases, you cannot reproduce problems like •	
deadlocks or data races every time.

Chapter 13 ■ Threads

434

Thread States

There are three basic thread states: •	 new, runnable, and terminated. When a thread is just
created, it is in a new state; when it is ready to run or running, it is in a runnable state. When
the thread dies, it’s in terminated state.

The •	 runnable state has two states internally (at the OS level): ready and running states.

A thread will be in the •	 blocked state when waiting to acquire a lock. The thread will be in the
timed_waiting state when a timeout is given for calls like wait. The thread will be in the waiting
state when, for example, wait() is called (without a time out value).

You will get an •	 IllegalThreadStateException if your operations result in invalid thread state
transitions.

Concurrent Access Problems

Concurrent reads and writes to resources may lead to the •	 data race problem.

You must use thread synchronization (i.e., locks) to access shared values and avoid data •	
races. Java provides thread synchronization features to provide protected access to shared
resources—namely, synchronized blocks and synchronized methods.

Using locks can introduce problems such as deadlocks. When a deadlock happens, the process •	
will hang and will never terminate.

A deadlock typically happens when two threads acquire locks in opposite order. When one •	
thread has acquired one lock and waits for another lock, another thread has acquired that
other lock and waits for the first lock to be released. So, no progress is made and the program
deadlocks.

To avoid deadlocks, it is better to avoid acquiring multiple locks. When you have to acquire •	
such multiple locks, ensure that they are acquired in the same order in all places in the
program.

The Wait/Notify Mechanism

When a thread has to wait for a particular condition or event to be satisfied by another thread, •	
you can use a wait/notify mechanism as a communication mechanism between threads.

When a thread needs to wait for a particular condition/event, you can either call •	 wait() with
or without a timeout value specified.

To avoid notifications getting lost, it is better to always use •	 notifyAll() instead of notify().

435

Chapter 14

Concurrency

Use java.util.concurrent collections

Apply atomic variables and locks

Use Executors and ThreadPools

Use the parallel Fork/Join Framework

Exam Topics

From the beginning, Java supported concurrency in the form of low-level threads management, locks, synchronization,
and APIs for concurrency. We covered them in the preceding chapter in our discussion of the Thread class,
Runnable interface, and synchronized keyword.

Since 5.0, Java also supports high-level concurrency APIs in its java.util.concurrent package. In this chapter,
we’ll focus on these APIs for concurrent programming. These high-level APIs exploit today’s multi-core hardware, in
which a single processor has multiple cores. These APIs are also useful for exploiting concurrency in machines that
support multiple processors.

Most of the Java concurrency utilities are provided in the java.util.concurrent package. Classes to efficiently
update shared variables without using locks are provided in the java.util.concurrent.atomic subpackage. The
Lock interface and the classes deriving from it are provided in the java.util.concurrent.locks subpackage.

Using java.util.concurrent Collections
There are many classes in the java.util.concurrent package that provide high-level APIs for concurrent
programming. In this section, we will mainly discuss synchronizer classes provided in this package. Following that, we
will briefly cover the important concurrent collection classes provided in the java.util.concurrent package.

You already understand the low-level concurrency constructs (such as the use of the synchronized keyword,
Runnable interface, and Thread class for creating threads) from the preceding chapter. In the case of a shared resource
that needs to be accessed by multiple threads, access and modifications to the shared resource need to be protected.
When you use the synchronized keyword, you employ mutexes to synchronize between threads for safe shared
access. Threads also often needed to coordinate their executions to complete a bigger higher-level task. The wait/
notify pattern discussed in the last chapter is one way to coordinate the execution of multiple threads.

Using APIs for acquiring and releasing locks (using mutexes) or invoking the wait/notify methods on locks
are low-level tasks. It is possible to build higher-level abstractions for thread synchronization. These high-level
abstractions for synchronizing activities of two or more threads are known as synchronizers. Synchronizers internally
make use of the existing low-level APIs for thread coordination.

Chapter 14 ■ Concurrency

436

The synchronizers provided in the java.util.concurrent library and their uses are listed here:

•	 Semaphore controls access to one or more shared resources.

•	 Phaser is used to support a synchronization barrier.

•	 CountDownLatch allows threads to wait for a countdown to complete.

•	 Exchanger supports exchanging data between two threads.

•	 CyclicBarrier enables threads to wait at a predefined execution point.

Now, we’ll discuss each of these synchronizers in turn with the help of examples.

Semaphore
A semaphore controls access to shared resources. A semaphore maintains a counter to specify the number of
resources that the semaphore controls. Access to the resource is allowed if the counter is greater than zero,while a zero
value of the counter indicates that no resource is available at the moment and so the access is denied.

The methods acquire() and release() are for acquiring and releasing resources from a semaphore. If a thread
calls acquire() and the counter is zero (i.e., resources are unavailable), the thread waits until the counter is non-zero
and then gets the resource for use. Once the thread is done using the resource, it calls release() to increment the
resource availability counter.

Note if the number of resources is 1, then at a given time only one thread can access the resource; in this case,
using the semaphore is similar to using a lock. Table 14-1 lists the important methods in the Semaphore class.

Table 14-1.  Important Methods in the Semaphore Class

Method Description

Semaphore(int permits) Constructor to create Semaphore objects with a given number of permits
(the number of threads that can access the resource at a time). If the
permit’s value is negative, the given number of release() calls must
happen before acquire() calls can succeed.

Semaphore(int permits,
 boolean fair)

Same as the previous constructor, but this extra fair option indicates that
the permits should be allotted on a first-come-first-served basis.

void acquire()
void acquire(int permits)

Acquires a permit if available; otherwise, it blocks until a permit becomes
available. Can throw an InterruptedException if some other thread
interrupts it while waiting to acquire a permit. The overloaded version
takes a number of permits as an argument.

void
acquireUninterruptibly()

Same as the acquire() method, but this thread cannot be interrupted
while waiting to acquire a permit.

boolean tryAcquire()
boolean tryAcquire(long timeout,
 TimeUnit unit)

Acquires a permit from the semaphore if available at the time of the call
and returns true; if unavailable, it returns false immediately (without
blocking). The overloaded tryAcquire() method additionally takes a
time-out argument—the thread blocks to acquire a permit from the
semaphore until a given time-out period.

void release()
void release(int permits)

Releases a permit from the semaphore. The overloaded version specifies
the number of permits to release.

Chapter 14 ■ Concurrency

437

Let’s assume that there are two ATM machines available in a ATM machine room. Therefore, only two people are
allowed at a time in the room. There are five people waiting outside to use the ATM machines. The situation can be
simulated by the code in Listing 14-1, in which each ATM machine is treated as a resource controlled by semaphore.

Listing 14-1.  ATMRoom.java

import java.util.concurrent.Semaphore;
 
// This class simulates a situation where an ATM room has only two ATM machines
// and five people are waiting to access the machine. Since only one person can access
// an ATM machine at a given time, others wait for their turn
class ATMRoom {
 public static void main(String []args) {
 // assume that only two ATM machines are available in the ATM room
 Semaphore machines = new Semaphore(2);
  
 // list of people waiting to access the machine
 new Person(machines, "Mickey");
 new Person(machines, "Donald");
 new Person(machines, "Tom");
 new Person(machines, "Jerry");
 new Person(machines, "Casper");
 }
}
 
// Each Person is an independent thread; but their access to the common resource
// (two ATM machines in the ATM machine room in this case) needs to be synchronized.
class Person extends Thread {
 private Semaphore machines;
 public Person(Semaphore machines, String name) {
 this.machines = machines;
 this.setName(name);
 this.start();
 }
 public void run() {
 try {
 System.out.println(getName() + " waiting to access an ATM machine");
 machines.acquire();
 System.out.println(getName() + " is accessing an ATM machine");
 Thread.sleep(1000); // simulate the time required for withdrawing amount
 System.out.println(getName() + " is done using the ATM machine");
 machines.release();
 } catch(InterruptedException ie) {
 System.err.println(ie);
 }
 }
}
 

Here is the output of the program in one sample run:
 
Mickey waiting to access an ATM machine
Tom waiting to access an ATM machine

Chapter 14 ■ Concurrency

438

Jerry waiting to access an ATM machine
Donald waiting to access an ATM machine
Casper waiting to access an ATM machine
Tom is accessing an ATM machine
Mickey is accessing an ATM machine
Tom is done using the ATM machine
Mickey is done using the ATM machine
Jerry is accessing an ATM machine
Donald is accessing an ATM machine
Donald is done using the ATM machine
Jerry is done using the ATM machine
Casper is accessing an ATM machine
Casper is done using the ATM machine
 

Now let’s analyze how this program works. People waiting to access an ATM machine are simulated by creating a
Person class that extends Thread. The run() method in the Thread class acquires a semaphore, simulates withdrawing
money from the ATM machine, and releases the semaphore.

The main() method simulates an ATM room with two ATM machines by creating a Semaphore object with
two permits. People waiting in the queue to access the ATM machine are implemented by just adding them to the
Semaphore object.

As you can see from the program output, the semaphore allows only two threads at a time and the other threads
keep waiting. When a thread releases the semaphore, another thread acquires it. Cool, isn’t it?

CountDownLatch
This synchronizer allows one or more threads to wait for a countdown to complete. This countdown could be for a set
of events to happen or until a set of operations being performed in other threads completes. Table 14-2 lists important
methods in this class.

Table 14-2.  Important Methods in the CountDownLatch Class

Method Description

CountDownLatch(int count) Creates an instance of CountDownLatch with the number of times the
countDown() method must be called before the threads waiting with await()
can continue execution.

void await() If the current count in CountDownLatch object is zero, it immediately returns;
otherwise, the thread blocks until the countdown reaches zero. Can throw an
InterruptedException.

boolean await(long timeout,
 TimeUnit unit)

Same as the previous method, await(), but takes an additional time-out
argument. If the thread returns successfully after the count reaches zero, this
method returns true; if the thread returns because of time-out, it returns false.

void countDown() Reduces the number of counts by one in this CountDownLatch object. If the
count reaches zero, all the (a)waiting threads are released. If the current count
is already zero, nothing happens.

long getCount() Returns the pending counts in this CountDownLatch object.

Chapter 14 ■ Concurrency

439

When you create a CountDownLatch, you initialize it with an integer, which represents a count value. Threads
would wait (by calling the await() method) for this count to reach zero. Once zero is reached, all threads are
released; any other calls to await() would return immediately since the count is already zero. The counter value can
be decremented by one by calling the countDown() method. You can get the current value of the counter using the
getCount() method. See Listing 14-2.

Listing 14-2.  RunningRaceStarter.java

import java.util.concurrent.*;
 
// this class simulates the start of a running race by counting down from 5. It holds
// three runner threads to be ready to start in the start line of the race and once the count down
// reaches zero, all the three runners start running...
 
class RunningRaceStarter {
 public static void main(String []args) throws InterruptedException {
 CountDownLatch counter = new CountDownLatch(5);
 // count from 5 to 0 and then start the race
  
 // instantiate three runner threads
 new Runner(counter, "Carl");
 new Runner(counter, "Joe");
 new Runner(counter, "Jack");
  
 System.out.println("Starting the countdown ");
 long countVal = counter.getCount();
 while(countVal > 0) {
 Thread.sleep(1000); // 1000 milliseconds = 1 second
 System.out.println(countVal);
 if(countVal == 1) {
 // once counter.countDown(); in the next statement is called,
 // Count down will reach zero; so shout "Start"
 System.out.println("Start");
 }
 counter.countDown(); // count down by 1 for each second
 countVal = counter.getCount();
 }
 }
}
 
// this Runner class simulates a track runner in a 100-meter dash race. The runner waits until the
// count down timer gets to zero and then starts running
class Runner extends Thread {
 private CountDownLatch timer;
 public Runner(CountDownLatch cdl, String name) {
 timer = cdl;
 this.setName(name);
 System.out.println(this.getName() + " ready and waiting for the count down to start");
 start();
 }
 

Chapter 14 ■ ConCurrenCy

440

 public void run() {
 try {
 // wait for the timer count down to reach 0
 timer.await();
 } catch (InterruptedException ie) {
 System.err.println("interrupted -- can't start running the race");
 }
 System.out.println(this.getName() + " started running");
 }
}

This program prints the following:

Carl ready and waiting for the count down to start
Joe ready and waiting for the count down to start
Jack ready and waiting for the count down to start
Starting the countdown
5
4
3
2
1
Start
Joe started running
Carl started running
Jack started running

Let’s consider how the program works. The class Runner simulates a runner in a running race waiting to start running.
It waits for the race to start by calling the await() method on the CountDownLatch object passed through the constructor.

The RunningRaceStarter class creates a CountDownLatch object. This counter object is initialized with the count
value 5, which means the countdown is from 5 to 0. In the main() method, you create Runner objects; these three
threads wait on the counter object. For each second, you call the countDown() method, which decrements count by 1.
Once the count reaches zero, all three waiting threads are released and they automatically continue execution.

Note: In this program, the sequence in which Joe, Carl, or Jack is printed cannot be predicted since it depends on
thread scheduling. So, if you run this program, you may get these three names printed in some other order.

Exchanger
The Exchanger class is meant for exchanging data between two threads. What Exchanger does is something very
simple: it waits until both the threads have called the exchange() method. When both threads have called the
exchange() method, the Exchanger object actually exchanges the data shared by the threads with each other. This
class is useful when two threads need to synchronize between them and continuously exchange data.

This class is a tiny class with only one method: exchange(). Note that this exchange() method has an overloaded
form where it takes a time-out period as an argument.

Listing 14-3 shows an example simulating silly talk between the Java Duke mascot and the coffee shop. The two
threads DukeThread and CoffeeShop threads run independently. However, for a chat to happen, they need to listen
when the other is talking. An Exchange object provides a means for them to talk to each other.

Chapter 14 ■ Concurrency

441

Listing 14-3.  KnockKnock.java

import java.util.concurrent.Exchanger;
 
// The DukeThread class runs as an independent thread. It talks to the CoffeeShopThread that
// also runs independently. The chat is achieved by exchanging messages through a common
// Exchanger<String> object that synchronizes the chat between them.
// Note that the message printed are the "responses" received from CoffeeShopThread
class DukeThread extends Thread {
 private Exchanger<String> sillyTalk;
  
 public DukeThread(Exchanger<String> args) {
 sillyTalk = args;
 }
 public void run() {
 String reply = null;
 try {
 // start the conversation with CoffeeShopThread
 reply = sillyTalk.exchange("Knock knock!");
 // Now, print the response received from CoffeeShopThread
 System.out.println("CoffeeShop: " + reply);
  
 // exchange another set of messages
 reply = sillyTalk.exchange("Duke");
 // Now, print the response received from CoffeeShopThread
 System.out.println("CoffeeShop: " + reply);
 
 // an exchange could happen only when both send and receive happens
 // since this is the last sentence to speak, we close the chat by
 // ignoring the "dummy" reply
 reply = sillyTalk.exchange("The one who was born in this coffee shop!");
 // talk over, so ignore the reply!
 } catch(InterruptedException ie) {
 System.err.println("Got interrupted during my silly talk");
 }
 }
}
 
class CoffeeShopThread extends Thread {
 private Exchanger<String> sillyTalk;

 public CoffeeShopThread(Exchanger<String> args) {
 sillyTalk = args;
 }
 public void run() {
 String reply = null;
 try {
 // exchange the first messages
 reply = sillyTalk.exchange("Who's there?");
 // print what Duke said
 System.out.println("Duke: " + reply);
  

Chapter 14 ■ Concurrency

442

 // exchange second message
 reply = sillyTalk.exchange("Duke who?");
 // print what Duke said
 System.out.println("Duke: " + reply);
  
 // there is no message to send, but to get a message from Duke thread,
 // both ends should send a message; so send a "dummy" string
 reply = sillyTalk.exchange("");
 System.out.println("Duke: " + reply);
 } catch(InterruptedException ie) {
 System.err.println("Got interrupted during my silly talk");
 }
 }
}
 
// Coordinate the silly talk between Duke and CoffeeShop by instantitaing the Exchanger object
// and the CoffeeShop and Duke threads
class KnockKnock {
 public static void main(String []args) {
 Exchanger<String> sillyTalk = new Exchanger<String>();
 new CoffeeShopThread(sillyTalk).start();
 new DukeThread(sillyTalk).start();
 }
}
 

The program prints the following:
 
Duke: Knock knock!
CoffeeShop: Who's there?
Duke: Duke
CoffeeShop: Duke who?
Duke: The one who was born in this coffee shop!
 

The comments inside the program explain how the program works. The main concept to understand with this
example is that Exchanger helps coordinate (i.e., synchronize) exchanging messages between two threads. Both the
threads wait for each other and use the exchange() method to exchange messages.

CyclicBarrier
There are many situations in concurrent programming where threads may need to wait at a predefined execution
point until all other threads reach that point. CyclicBarrier helps provide such a synchronization point; see
Table 14-3 for the important methods in this class.

Chapter 14 ■ Concurrency

443

Listing 14-4 is an example that makes use of CyclicBarrier class.

Listing 14-4.  CyclicBarrierTest.java

import java.util.concurrent.*;
 
// The run() method in this thread should be called only when four players are ready to start the game
class MixedDoubleTennisGame extends Thread {
 public void run() {
 System.out.println("All four players ready, game starts \n Love all...");
 }
}
 
// This thread simulates arrival of a player.
// Once a player arrives, he/she should wait for other players to arrive
class Player extends Thread {
 CyclicBarrier waitPoint;
 public Player(CyclicBarrier barrier, String name) {
 this.setName(name);
 waitPoint = barrier;
 this.start();
 }
 public void run() {
 System.out.println("Player " + getName() + " is ready ");

Table 14-3.  Important Methods in the CyclicBarrier Class

Method Description

CyclicBarrier(int numThreads) Creates a CyclicBarrier object with the number of threads waiting
on it specified. Throws IllegalArgumentException if numThreads is
negative or zero.

CyclicBarrier(int parties,
 Runnable barrierAction)

Same as the previous constructor; this constructor additionally takes
the thread to call when the barrier is reached.

int await()
int await(long timeout,
 TimeUnit unit)

Blocks until the specified number of threads have called await()
on this barrier. The method returns the arrival index of this
thread. This method can throw an InterruptedException if
the thread is interrupted while waiting for other threads or a
BrokenBarrierException if the barrier was broken for some reason
(for example, another thread was timed-out or interrupted). The
overloaded method takes a time-out period as an additional option;
this overloaded version throws a TimeoutException if all other
threads aren’t reached within the time-out period.

boolean isBroken() Returns true if the barrier is broken. A barrier is broken if at least one
thread in that barrier was interrupted or timed-out, or if a barrier
action failed throwing an exception.

void reset() Resets the barrier to the initial state. If there are any threads waiting
on that barrier, they will throw the BrokenBarrier exception.

Chapter 14 ■ Concurrency

444

 try {
 waitPoint.await(); // await for all four players to arrive
 } catch(BrokenBarrierException | InterruptedException exception) {
 System.out.println("An exception occurred while waiting... " + exception);
 }
 }
}
 
// Creates a CyclicBarrier object by passing the number of threads and the thread to run
// when all the threads reach the barrier
class CyclicBarrierTest {
 public static void main(String []args) {
 // a mixed-double tennis game requires four players; so wait for four players
 // (i.e., four threads) to join to start the game
 System.out.println("Reserving tennis court \n As soon as four players arrive,
game will start");
 CyclicBarrier barrier = new CyclicBarrier(4, new MixedDoubleTennisGame());
 new Player(barrier, "G I Joe");
 new Player(barrier, "Dora");
 new Player(barrier, "Tintin");
 new Player(barrier, "Barbie");
 }
}
 

The program prints the following:
 
Reserving tennis court
As soon as four players arrive, game will start
Player G I Joe is ready
Player Dora is ready
Player Tintin is ready
Player Barbie is ready
All four players ready, game starts
 Love all...
 

Now let’s see how this program works. In the main() method you create a CyclicBarrier object. The constructor
takes two arguments: the number of threads to wait for, and the thread to invoke when all the threads reach the
barrier. In this case, you have four players to wait for, so you create four threads, with each thread representing a
player. The second argument for the CyclicBarrier constructor is the MixedDoubleTennisGame object since this
thread represents the game, which will start once all four players are ready.

Inside the run() method for each Player thread, you call the await() method on the CyclicBarrier
object. Once the number of awaiting threads for the CyclicBarrier object reaches four, the run() method in
MixedDoubleTennisGame is called.

Phaser
Phaser is a useful feature when few independent threads have to work in phases to complete a task. So, a
synchronization point is needed for the threads to work on a part of a task, wait for others to complete other part of
the task, and do a sync-up before advancing to complete the next part of the task. Table 14-4 lists important methods
in this class.

Chapter 14 ■ Concurrency

445

Consider the example of processing a delivery order in a small coffee shop. Assume that there are only three
workers: a cook, a helper, and an attendant. To simplify the program logic, assume that each delivery order consists
of three food items. Completing a delivery order consists of preparing the three orders one after another. To complete
preparing a food item, all three workers—the cook, the helper, and the attendant—should do their part of the work.
Listing 14-5 shows how this situation can be implemented using the Phaser class.

Listing 14-5.  ProcessOrder.java

import java.util.concurrent.*;
 
// ProcessOrder thread is the master thread overlooking to make sure that the Cook, Helper,
// and Attendant are doing their part of the work to complete preparing the food items
// and complete order delivery
// To simplify the logic, we assume that each delivery order consists of exactly three food items
class ProcessOrder {
 public static void main(String []args) throws InterruptedException {
 // the Phaser is the synchronizer to make food items one-by-one,
 // and deliver it before moving to the next item
 Phaser deliveryOrder = new Phaser(1);
  

Table 14-4.  Important Methods in the Phaser class

Method Description

Phaser() Creates a Phaser object with no registered parties and no parents. The
initial phase is set to 0.

Phaser(int numThreads) Creates a Phaser object with a given number of threads (parties) to arrive
to advance to the next stage; the initial phase is set to 0.

int register() Adds a new thread (party) to this Phaser object. Returns the phase
current number. Throws an IllegalStateException if the maximum
supported parties are already registered.

int bulkRegister(int numThreads) Adds numThreads of unarrived parties to this Phaser object. Returns the
phase current number. Throws an IllegalStateException if maximum
supported parties are already registered.

int arrive() Arrives at this phase without waiting for other threads to arrive. Returns
the arrival phase number. Can throw an IllegalStateException.

int arriveAndDeregister() Same as the previous method, but also deregisters from the Phaser object.

int arriveAndAwaitAdvance() Arrive at this phase and waits (i.e., blocks) until other threads arrive.

int awaitAdvance(int phase) Waits (i.e., blocks) until this Phaser object advances to the given
phase value.

int getRegisteredParties() Returns the number of threads (parties) registered with this Phaser object.

int getArrivedParties() Returns the number of threads (parties) arrived at the current phase of
the Phaser object.

int getUnarrivedParties() Returns the number of threads (parties) that have not arrived when
compared to the registered parties at the current phase of the Phaser object.

Chapter 14 ■ Concurrency

446

 System.out.println("Starting to process the delivery order ");
  
 new Worker(deliveryOrder, "Cook");
 new Worker(deliveryOrder, "Helper");
 new Worker(deliveryOrder, "Attendant");
  
 for(int i = 1; i <= 3; i++) {
 // Prepare, mix and deliver this food item
 deliveryOrder.arriveAndAwaitAdvance();
 System.out.println("Deliver food item no. " + i);
 }
 // work completed for this delivery order, so deregister
 deliveryOrder.arriveAndDeregister();
 System.out.println("Delivery order completed... give it to the customer");
 }
}
 
// The work could be a Cook, Helper, or Attendant. Though the three work independently, the
// should all synchronize their work together to do their part and complete preparing a food item
class Worker extends Thread {
 Phaser deliveryOrder;
 Worker(Phaser order, String name) {
 deliveryOrder = order;
 this.setName(name);
 deliveryOrder.register();
 start();
 }
 public void run() {
 for(int i = 1; i <= 3; i++) {
 System.out.println("\t" + getName() + " doing his work for order no. " + i);
 if(i == 3) {
 // work completed for this delivery order, so deregister
 deliveryOrder.arriveAndDeregister();
 } else {
 deliveryOrder.arriveAndAwaitAdvance();
 }
 try {
 Thread.sleep(3000); // simulate time for preparing the food item
 } catch(InterruptedException ie) {
 /* ignore exception */
 ie.printStackTrace();
 }
 }
 }
}
 

Chapter 14 ■ Concurrency

447

The program prints the following:
 
Starting to process the delivery order
 Cook doing his work for order no. 1
 Attendant doing his work for order no. 1
 Helper doing his work for order no. 1
Deliver food item no. 1
 Helper doing his work for order no. 2
 Attendant doing his work for order no. 2
 Cook doing his work for order no. 2
Deliver food item no. 2
 Helper doing his work for order no. 3
 Cook doing his work for order no. 3
 Attendant doing his work for order no. 3
Deliver food item no. 3
Delivery order completed . . . give it to the customer
 

In this program, you create a Phaser object to support the synchronizing of three Worker thread objects. You
create a Phaser object by calling the default constructor of the Phaser object. When the Worker thread objects are
created, they register themselves to the Phaser object. Alternatively, you could have called

Phaser deliveryOrder = new Phaser(3); // for three parties (i.e., threads)

In this case, you would not need to call the register() method on the Phaser object in the Worker thread
constructor.

In this case, you’ve assumed that a delivery order consists of processing three food items, so the for loop runs
three times. For each iteration, you call deliveryOrder.arriveAndAwaitAdvance(). For this statement to proceed,
all the three parties (the Cook, Helper, and Attendant) have to complete their part of the work to prepare the food
item. You simulate “preparing food” by calling the sleep() method in the run method for these Worker threads. These
worker threads call deliveryOrder.arriveAndAwaitAdvance() for preparing each food item. As each food item is
prepared (i.e., each phase is completed), the work progresses to the next phase. Once three phases are complete, the
delivery order processing is complete and the program returns.

Concurrent Collections
The java.util.concurrent package provides a number of classes that are thread-safe equivalents of the ones
provided in the collections framework classes in the java.util package (see Table 14-5). For example,
java.util.concurrent.ConcurrentHashMap is a concurrent equivalent to java.util.HashMap. The main difference
between these two containers is that you need to explicitly synchronize insertions and deletions with HashMap,
whereas such synchronization is built into the ConcurrentHashMap. If you know how to use HashMap, you know
how to use ConcurrentHashMap implicitly. From the OCPJP 7 exam perspective, you only need to have an overall
understanding of the classes in Table 14-5, so we won’t delve into details on how to make use of these classes.

Chapter 14 ■ Concurrency

448

Listings 14-6 and 14-7 show how a concurrent version differs from its non-concurrent version. Assume that you
have a PriorityQueue object shared by two threads. Assume that one thread inserts an element into the priority
queue, and the other thread removes an element. If the threads are scheduled such that the inserting an element
occurs before removing the element, there is no problem. However, if the first thread attempts to remove an element
before the second thread inserts an element, you get into trouble.

Listing 14-6.  PriorityQueueExample.java

import java.util.*;
 
// Simple PriorityQueue example. Here, we create two threads in which one thread inserts an element,
// and another thread removes an element from the priority queue.
class PriorityQueueExample {
 public static void main(String []args) {
 final PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();
 // spawn a thread that removes an element from the priority queue

Table 14-5.  Some Concurrent Collection Classes in the java.util.concurrent Package

Class/Interface Short Description

BlockingQueue This interface extends the Queue interface. In BlockingQueue, if the queue is empty,
it waits (i.e., blocks) for an element to be inserted, and if the queue is full, it waits
for an element to be removed from the queue.

ArrayBlockingQueue This class provides a fixed-sized array based implementation of the
BlockingQueue interface.

LinkedBlockingQueue This class provides a linked-list-based implementation of the BlockingQueue
interface.

DelayQueue This class implements BlockingQueue and consists of elements that are of type
Delayed. An element can be retrieved from this queue only after its delay period.

PriorityBlockingQueue Equivalent to java.util.PriorityQueue, but implements the BlockingQueue
interface.

SynchronousQueue This class implements BlockingQueue. In this container, each insert() by a thread
waits (blocks) for a corresponding remove() by another thread and vice versa.

LinkedBlockingDeque This class implements BlockingDeque where insert and remove operations could
block; uses a linked-list for implementation.

ConcurrentHashMap Analogous to Hashtable, but with safe concurrent access and updates.

ConcurrentSkipListMap Analogous to TreeMap, but provides safe concurrent access and updates.

ConcurrentSkipListSet Analogous to TreeSet, but provides safe concurrent access and updates.

CopyOnWriteArrayList Similar to ArrayList, but provides safe concurrent access. When the ArrayList is
updated, it creates a fresh copy of the underlying array.

CopyOnWriteArraySet A Set implementation, but provides safe concurrent access and is implemented
using CopyOnWriteArrayList. When the container is updated, it creates a fresh
copy of the underlying array.

Chapter 14 ■ Concurrency

449

 new Thread() {
 public void run() {
 // Use remove() method in PriorityQueue to remove the element if available
 System.out.println("The removed element is: " + priorityQueue.remove());
 }
 }.start();
 // spawn a thread that inserts an element into the priority queue
 new Thread() {
 public void run() {
 // insert Integer value 10 as an entry into the priority queue
 priorityQueue.add(10);
 System.out.println("Successfully added an element to the queue ");
 }
 }.start();
 }
}
 

If you run this program, it throws an exception like this:
 
Exception in thread "Thread-0" java.util.NoSuchElementException
at java.util.AbstractQueue.remove(AbstractQueue.java:117)
at PriorityQueueExample$1.run(QueueExample.java:10)
Successfully added an element to the queue
  

This output indicates that the first thread attempted removing an element from an empty priority queue, and
hence it results in a NoSuchElementException.

However, consider a slight modification of this program (Listing 14-7) that uses a PriorityBlockingQueue
instead of PriorityQueue.

Listing 14-7.  PriorityBlockingQueueExample.java

// Illustrates the use of PriorityBlockingQueue. In this case, if there is no element available in
the priority queue
// the thread calling take() method will block (i.e., wait) until another thread inserts an element
 
import java.util.concurrent.*;
 
class PriorityBlockingQueueExample {
 public static void main(String []args) {
 final PriorityBlockingQueue<Integer> priorityBlockingQueue
 = new PriorityBlockingQueue<>();
 new Thread() {
 public void run() {
 try {
 // use take() instead of remove()
 // note that take() blocks, whereas remove() doesn't block
 System.out.println("The removed element is: "
 + priorityBlockingQueue.take());
 } catch(InterruptedException ie) {
 // its safe to ignore this exception
 ie.printStackTrace();
 }
 }

Chapter 14 ■ ConCurrenCy

450

 }.start();
 new Thread() {
 public void run() {
 // add an element with value 10 to the priority queue
 priorityBlockingQueue.add(10);
 System.out.println("Successfully added an element to the queue ");
 }
 }.start();
 }
}

The program prints the following:

Successfully added an element to the queue
The removed element is: 10

This program will not result in a crash as in the previous case (Listing 14-6). This is because the take() method
will block until an element gets inserted by another thread; once inserted, the take() method will return that value.
In other words, if you’re using a PriorityQueue object, you need to synchronize the threads such that insertion of an
element always occurs before removing an element. However, in PriorityBlockingQueue, the order does not matter,
and no matter which operation (insertion or removal of an element) is invoked first, the program works correctly. In
this way, concurrent collections provide support for safe use of collections in the context of multiple threads without
the need for you to perform explicit synchronization operations.

Apply Atomic Variables and Locks
The java.util.concurrent package has two subpackages: java.util.concurrent.atomic and
java.util.concurrent.locks. In this section we discuss these two subpackages. Unlike the rest of this chapter,
which discusses high-level concurrency abstractions, both atomic variables and locks are low-level APIs. However,
they provide more fine-grained control when you want to write multithreaded code.

Atomic Variables
Have you seen code that acquires and releases locks for implementing primitive/simple operations like incrementing
a variable, decrementing a variable, and so on? Such acquiring and releasing of locks for such primitive operations is
not efficient. In such cases, Java provides an efficient alternative in the form of atomic variables.

Here is a list of some of the classes in this package and their short description:

•	 AtomicBoolean: Atomically updatable Boolean value.

•	 AtomicInteger: Atomically updatable int value; inherits from the Number class.

•	 AtomicIntegerArray: An int array in which elements can be updated atomically.

•	 AtomicLong: Atomically updatable long value; inherits from Number class.

•	 AtomicLongArray: A long array in which elements can be updated atomically.

•	 AtomicReference<V>: An atomically updatable object reference of type V.

•	 AtomicReferenceArray<E>: An atomically updatable array that can hold object references of
type E (E refers to be base type of elements).

Chapter 14 ■ Concurrency

451

   �O nly AtomicInteger and AtomicLong extend from Number class but not AtomicBoolean. All other
classes in the java.util.concurrent.atomic subpackage inherit directly from the Object class.

Of the classes in the java.util.concurrency.atomic subpackage, AtomicInteger and AtomicLong are the
most important. Table 14-6 lists important methods in the AtomicInteger class. (The methods in AtomicLong are
analogous to these.)

Table 14-6.  Important Methods in the AtomicInteger Class

Method Description

AtomicInteger() Creates an instance of AtomicInteger with initial value 0.

AtomicInteger(int initVal) Creates an instance of AtomicInteger with initial value initVal.

int get() Returns the integer value held in this object.

void set(int newVal) Resets the integer value held in this object to newVal.

int getAndSet(int newValue) Returns the current int value held in this object and sets the value
held in this object to newVal.

boolean compareAndSet (int expect,
 int update)

Compares the int value of this object to the expect value, and if they
are equal, sets the int value of this object to the update value.

int getAndIncrement() Returns the current value of the integer value in this object and
increments the integer value in this object. Similar to the behavior
of i++ where i is an int.

int getAndDecrement() Returns the current value of the integer value in this object and
decrements the integer value in this object. Similar to the behavior
of i-- where i is an int.

int getAndAdd(int delta) Returns the integer value held in this object and adds given delta value
to the integer value.

int incrementAndGet() Increments the current value of the integer value in this object and
returns that value. Similar to the behavior of ++i where i is an int.

int decrementAndGet() Decrements the current integer value in this object and returns that
value. Similar to behavior of --i where i is an int.

int addAndGet(int delta) Adds the delta value to the current value of the integer in this object
and returns that value.

int intValue()
long longValue()
float floatValue()
doubleValue()

Casts the current int value of the object and returns it as int, long,
float, or double values.

Chapter 14 ■ Concurrency

452

Let’s try out an example to understand how to use AtomicInteger or AtomicLong. Assume that you have a
counter value that is public and accessible by all threads. How do you update or access this common counter value
safely without introducing the data race problem (discussed in the previous chapter)? Obviously, you can use the
synchronized keyword to ensure that the critical section (the code that modifies the counter value) is accessed by
only one thread at a given point in time. The critical section will be very small, as in
  
public void run() {
 synchronized(SharedCounter.class) {
 SharedCounter.count++;
 }
}
 

However, this code is inefficient since it acquires and releases the lock every time just to increment the value of
count. Alternatively, if you declare count as AtomicInteger or AtomicLong (whichever is suitable), then there is no
need to use a lock with synchronized keyword. Listing 14-8 gives the full program to show how to use AtomicLong
in practice.

Listing 14-8.  AtomicVariableTest.java

import java.util.concurrent.atomic.*;
 
// Class to demonstrate how incrementing "normal" (i.e., thread unsafe) integers and incrementing
// "atomic" (i.e., thread safe) integers are different: Incrementing a shared Integer object without
locks can result
// in a data race; however, incrementing a shared AtomicInteger will not result in a data race.
 
class AtomicVariableTest {
 // Create two integer objects – one normal and another atomic – with same initial value
 private static Integer integer = new Integer(0);
 private static AtomicInteger atomicInteger = new AtomicInteger(0);
  
 static class IntegerIncrementer extends Thread {
 public void run() {
 System.out.println("Incremented value of integer is: " + ++integer);
 }
 }
 static class AtomicIntegerIncrementer extends Thread {
 public void run() {
 System.out.println("Incremented value of atomic integer is: "
 + atomicInteger.incrementAndGet());
 }
 }
 public static void main(String []args) {
 // create three threads each for incrementing atomic and "normal" integers
 for(int i = 0; i < 5; i++) {
 new IntegerIncrementer().start();
 new AtomicIntegerIncrementer().start();
 }
 }
}
  

Chapter 14 ■ Concurrency

453

The actual output depends on thread scheduling. In one run it printed the following:
 
Incremented value of atomic integer is: 1
Incremented value of integer is: 1
Incremented value of integer is: 1
Incremented value of atomic integer is: 2
Incremented value of integer is: 2
Incremented value of atomic integer is: 3
Incremented value of integer is: 3
Incremented value of integer is: 4
Incremented value of atomic integer is: 4
Incremented value of atomic integer is: 5
 

In this output, notice that incrementing the Integer object has resulted in a data race: the final value of Integer
after incrementing it 5 times (from initial value 0) is 4. For AtomicInteger, however, it is 5—which is correct.

Let’s analyze this program. The AtomicVariableTest has two data members—one of type Integer and the other
of type AtomicInteger—with same initial value.

There are two Thread classes. One class increments Integer value in its run() method, and the other increments
AtomicInteger in its run() method. In the main() method, you spawn five threads of these two kind of Threads. The
output shows that incrementing the Integer value is prone to a data race when it is without a lock, whereas it is safe to
increment the AtomicInteger value without any locks.

Locks
In the last chapter, we discussed the synchronized keyword and how it enforces that only one thread executes in a
critical section at a time. The java.util.concurrent.locks package provides facilities that are more sophisticated. In
this section, we will discuss the Lock interface.

Using a Lock object is similar to obtaining implicit locks using the synchronized keyword. The aim of both
constructs is the same: to ensure that only one thread accesses a shared resource at a time. However, unlike the
synchronized keyword, Locks also support the wait/notify mechanism along with its support for Condition objects.

   Y ou can think of using synchronized for locking implicitly and using Lock objects for locking explicitly.

The advantage of using the synchronized keyword (implicit locking) is that you don’t have to remember to
release the lock in a finally block since, at the end of the synchronized block (or method), code will be generated
to automatically release the lock. Although this is a useful feature, there are some situations where you may need to
control the release of the lock manually (say, for releasing it other than at the end of that block), and Lock objects
provide this flexibility. However, it is your responsibility to ensure that you release the lock in a finally block while
using Lock objects. The following snippet describes the usage idiom for a Lock:
 
Lock lock = /* get Lock type instance */;
lock.lock();

Chapter 14 ■ Concurrency

454

try {
 // critical section
}
finally {
 lock.unlock();
}
 

Another difference between implicit locks and explicit Lock objects is that you can do a “non-blocking attempt”
to acquire locks with Locks. Well, what does “non-blocking attempt” mean here? You get a lock if that lock is available
for locking, or you can back out from requesting the lock using the tryLock() method on a Lock object. Isn’t it
interesting? If you acquire the lock successfully, then you can carry out the task to be carried out in a critical section;
otherwise you execute an alternative action. It is noteworthy that an overloaded version of the tryLock() method
takes the timeout value as an argument so that you can wait to acquire the lock for the specified time.

tryLock(long time, TimeUnit unit).

With tryLock(), the idiom to use the Lock object is:
 
Lock lock = /* get Lock type instance */;
if(tryLock()) {
 try {
 // critical section
 }
 finally {
 lock.unlock();
 }
}
else {
 
}
 

Using tryLock() helps avoid some of the thread synchronization-related problems discussed in the last chapter,
such as deadlocks and livelocks. Table 14-7 lists important methods in the Lock class.

Table 14-7.  Important Methods in the Lock Class

Method Description

void lock() Acquires the lock.

boolean tryLock() Acquires the lock and returns true if the lock is available; if the lock is not
available, it does not acquire the lock and returns false.

boolean tryLock(long time,
 TimeUnit unit)

Same as the previous method tryLock(), but waits for the given waiting
time before failing to acquire the lock and returns false.

void lockInterruptibly() Acquires a lock; during the process of a acquiring the lock, if another
thread interrupts it, this method throws an InterruptedException

Condition newCondition() Returns a Condition object associated with this Lock object.

void unlock() Releases the lock.

Chapter 14 ■ Concurrency

455

Let’s look at an example of a Lock object. In this example, you use a Lock object and pass it to threads to
synchronize them on this Lock object. This program is a simple variation of the program using Semaphores given in
Listing 14-1. In Listing 14-9, you simulate accessing an ATM machine, which is a shared resource. Of course, only one
person can use an ATM machine at a time, hence the code for accessing the machine is a critical section.

Listing 14-9.  ATMRoom.java

import java.util.concurrent.locks.*;
 
// This class simulates a situation where only one ATM machine is available and
// and five people are waiting to access the machine. Since only one person can
// access an ATM machine at a given time, others wait for their turn
class ATMMachine {
 public static void main(String []args) {
 // A person can use a machine again, and hence using a "reentrant lock"
 Lock machine = new ReentrantLock();
  
 // list of people waiting to access the machine
 new Person(machine, "Mickey");
 new Person(machine, "Donald");
 new Person(machine, "Tom");
 new Person(machine, "Jerry");
 new Person(machine, "Casper");
 }
}
 
// Each Person is an independent thread; their access to the common resource
// (the ATM machine in this case) needs to be synchronized using a lock
class Person extends Thread {
 private Lock machine;
 public Person(Lock machine, String name) {
 this.machine = machine;
 this.setName(name);
 this.start();
 }
 public void run() {
 try {
 System.out.println(getName() + " waiting to access an ATM machine");
 machine.lock();
 System.out.println(getName() + " is accessing an ATM machine");
 Thread.sleep(1000); // simulate the time required for withdrawing amount
 } catch(InterruptedException ie) {
 System.err.println(ie);
 }
 finally {
 System.out.println(getName() + " is done using the ATM machine");
 machine.unlock();
 }
 }
}
 

Chapter 14 ■ Concurrency

456

Here is the output of this program:
 
Donald waiting to access an ATM machine
Jerry waiting to access an ATM machine
Tom waiting to access an ATM machine
Mickey waiting to access an ATM machine
Donald is accessing an ATM machine
Casper waiting to access an ATM machine
Donald is done using the ATM machine
Jerry is accessing an ATM machine
Jerry is done using the ATM machine
Tom is accessing an ATM machine
Tom is done using the ATM machine
Mickey is accessing an ATM machine
Mickey is done using the ATM machine
Casper is accessing an ATM machine
Casper is done using the ATM machine
 

As you can observe from the output, the machine is accessed by only one person at a time, though there may be
others waiting to access it. In this program, the class ATMMachine creates a Lock object representing an ATM machine.
There are five people waiting to access the machine, which is simulated by creating five instances of the Person class.
The Person class extends the Thread and remembers the Lock object on which it has to acquire and release the lock.

The run() method simply acquires the lock, accesses the shared resource, and releases the lock in a finally
block. The Lock object (machine variable here) ensures that only one thread accesses it at a given point in time. Other
threads block while one thread is accessing the lock.

Note that you may get a different order of people accessing the machine if you try running this program. This is
because the access order depends on how the scheduler in the JVM schedules the threads to run.

   �T he ReadWriteLock interface (which extends from the Lock interface) specifies a lock that provides
separate locks for read-only access and write access. You can use the readLock() and writeLock()
methods to get instances of read and write locks, respectively. The ReentrantReadWriteLock class
implements the ReadWriteLock interface.

Conditions
A Condition supports thread notification mechanism. When a certain condition is not satisfied, a thread can wait
for another thread to satisfy that condition; that other thread could notify once the condition is met. A condition is
bound to a lock. A Condition object offers three methods to support wait/notify pattern: await(), signal(), and
signalAll(). These three methods are analogous to the wait(), notify(), and notifyAll() methods supported by
the Object class.

A thread can wait for a condition to be true using the await() method, which is an interruptible blocking call. If
you want non-interruptible waiting, you can call awaitUninterruptibly(). You can also specify time duration for the
waiting using one of the overloaded methods:

•	 long awaitNanos(long nanosTimeout)

•	 boolean await(long time, TimeUnit unit)

•	 boolean awaitUntil(Date deadline)

Chapter 14 ■ Concurrency

457

Now let’s look at an example that makes use of Condition objects. Assume that you’re waiting for a person
named Joe to come on train IC1122, which is from Madrid to Paris. When Joe’s train arrives at the station, he informs
you; you pick him up and go home.

Assuming that multiple trains can arrive at a railway station, you need to wait for a specific train to arrive. Once
the train arrives that you’re interested in, you get a “notification” or “signal” from that train. This scenario is a good
candidate for using the wait/notify pattern. There are two ways to implement this pattern. The first option is to use
implicit locks and make use of the wait() and notifyAll() methods in the Object class. The second option—shown
in Listing 14-10—is to use the explicit Lock and Condition objects and use the await() and signalAll() methods in
the Condition object.

Listing 14-10.  RailwayStation.java

import java.util.concurrent.locks.*;
 
// This class simulates arrival of trains in a railway station.
class RailwayStation {
 // A common lock for synchronization
 private static Lock station = new ReentrantLock();
 // Condition to wait or notify the arrival of Joe in the station
 private static Condition joeArrival = station.newCondition();
  
 // Train class simulates arrival of trains independently
 static class Train extends Thread {
 public Train(String name) {
 this.setName(name);
 }
 public void run() {
 station.lock();
 try {
 System.out.println(getName() + ": I've arrived in station ");
 if(getName().startsWith("IC1122")) {
 // Joe is coming in train IC1122 - he announces it to us
 joeArrival.signalAll();
 }
 }
 finally {
 station.unlock();
 }
 }
 }
 
 // Our wait in the railway station for Joe is simulated by this thread. Once we get
notification from Joe
 // that he has arrived, we pick-him up and go home
 static class WaitForJoe extends Thread {
 public void run() {
 System.out.println("Waiting in the station for IC1122 in which Joe is coming");
 station.lock();
 try {
 // await Joe's train arrival
 joeArrival.await();

Chapter 14 ■ Concurrency

458

 // if this statement executes, it means we got a train arrival signal
 System.out.println("Pick up Joe and go home");
 } catch(InterruptedException ie) {
 ie.printStackTrace();
 }
 finally {
 station.unlock();
 }
 }
 }
  
 // first create a thread that waits for Joe to arrive and then create new Train threads
 public static void main(String []args) throws InterruptedException {
 // we are waiting before the trains start coming
 new WaitForJoe().start();
 // Trains are separate threads - they can arrive in any order
 new Train("IC1234 - Paris to Munich").start();
 new Train("IC2211 - Paris to Madrid").start();
 new Train("IC1122 - Madrid to Paris").start();
 new Train("IC4321 - Munich to Paris").start();
 }
}
 

Here is the output of this program:
 
Waiting in the station for IC1122 in which Joe is coming
IC1234 - Paris to Munich: I've arrived in station
IC1122 - Madrid to Paris: I've arrived in station
IC2211 - Paris to Madrid: I've arrived in station
Pick up Joe and go home
IC4321 - Munich to Paris: I've arrived in station
 

Let’s analyze how this program works. In the RailwayStation class you have a common Lock object named
station. From that station object, you obtain a Condition object (remember that a condition is always associated
with a lock) named joeArrival. You used the newCondition() method, so the resulting Condition object is an
interruptible condition; you have not specified any time-out, so the awaiting thread will wait forever until it gets
the signal.

The Train class is a Thread that simulates arrival of a train in the railway station. The run() method in Train first
obtains the lock before announcing that the train has arrived, and it releases before the method exits. Note that if you
call await() on the Condition object without acquiring a lock, you’ll get an IllegalMonitorStateException. In the
run() method, if the Train name is IC1122, it will signal us that Joe has arrived by calling joeArrival.signalAll();.

Your wait in the railway station for Joe is simulated by this WaitForJoe thread. In the run() method, you acquire
the lock and wait for the joeArrival condition to be signaled. Once you are notified (i.e., signaled) that he has arrived,
you pick him up and go home.

   � In multithreading, a common need is to wait for a condition to be satisfied by one thread before another
thread can proceed. Using polling (i.e., repeatedly checking for a condition using a while loop) is a bad
solution because this solution wastes CPU cycles; further, it is also prone to data races. Use guarded
blocks using wait/notify or await/signal instead.

Chapter 14 ■ Concurrency

459

Multiple Conditions on a Lock
From the OCPJP 7 exam perspective, it is important to understand locks and conditions. So, we’ll discuss one
more detailed example that makes use of locks and conditions. In this program, we show how you can get multiple
Condition objects on a Lock object.

Assume that you are asked to implement a fixed-size queue with the size of the queue determined at the time of
thread creation. In a typical queue, if there are no elements in the queue and if the remove() method is called, it will
throw a NoSuchElementException (as you saw in Listing 14-6). However, in this case, you want the thread to block
until some other thread inserts an element. Similarly, if you try inserting in a queue that is already full, instead of
throwing IllegalStateException to indicate that it is not possible to insert any more elements, the thread should
block until an element is removed. In other words, you need to implement a simple blocking queue (see Listing 14-11).

Listing 14-11.  BlockerQueue.java

import java.util.concurrent.locks.*;
 
// this implements a fixed size queue with size determined at the time of creation. I/ if remove()
is called
// when there are no elements, then the queue blocks (i.e., waits) until an element is inserted.
// If insert() is called when the queue is full, then the queue blocks until an element is removed
 
class BlockerQueue {
 // remember the max size of the queue
 private int size = 0;
  
 // array to store the elements in the queue
 private Object elements[];
  
 // pointer that points to the current element in the queue
 private int currPointer = 0;

 // internal lock used for synchronized access to the BlockerQueue
 private Lock internalLock = new ReentrantLock();
  
 // condition to wait for when queue is empty that makes use of the common lock
 private Condition empty = internalLock.newCondition();
  
 // condition to wait for when queue is full that makes use of the common lock
 private Condition full = internalLock.newCondition();
  
 public BlockerQueue(int size) {
 this.size = size;
 elements = new Object[size];
 }
  
 // remove an element if available; or if there are no elements in the queue,
 // await insertion of an element. Once an element is inserted, notify to any threads
 // waiting for insertion in a full queue
 public Object remove() {
 Object element = null;
 internalLock.lock();

Chapter 14 ■ ConCurrenCy

460

 try {
 if(currPointer == 0) {
 System.out.println("In remove(): no element to remove, so waiting
for insertion");
 // cannot remove - no elements in the queue;
 // so block until an element is inserted
 empty.await();
 // if control reaches here, that means some thread completed
 // calling insert(), so proceed to remove that element
 System.out.println("In remove(): got notification that an element has
got inserted");
 }
 // decrement the currPointer and then get the element
 element = elements[--currPointer];
 System.out.println("In remove(): removed the element " + element);

 // an element is removed, so there is space for insertion
 // so notify any threads waiting to insert
 full.signalAll();
 System.out.println("In remove(): signalled that there is space for insertion");
 } catch(InterruptedException ie) {
 ie.printStackTrace();
 } finally {
 internalLock.unlock();
 }
 return element;
 }

 // insert an element if there is space for insertion. if queue is full,
 // await for remove() to be called and get signal to proceed for insertion.
 // after insertion, signal any awaiting threads in case of an empty queue.
 public void insert(Object element) {
 internalLock.lock();
 try {
 if(currPointer == size) {
 System.out.println("In insert(): queue is full, so waiting for removal");
 // cannot insert - the queue is full;
 // so block until an element is removed
 full.await();
 // if control reaches here, that means some thread completed
 // calling remove(), so proceed to insert this element
 System.out.println("In insert(): got notification that remove got called,
so proceeding to insert the element");
 }
 // get the element and after that decrement the currPointer
 elements[currPointer++] = element;
 System.out.println("In insert(): inserted the element " + element);
 // an element is inserted, so any other threads can remove it...
 // so notify any threads waiting to remove
 empty.signalAll();
 System.out.println("In insert(): notified that queue is not empty");

Chapter 14 ■ Concurrency

461

 } catch(InterruptedException ie) {
 ie.printStackTrace();
 } finally {
 internalLock.unlock();
 }
 }
}
 

Here is test code for this class:
 
class BlockerQueueTest1 {
 public static void main(String []args) {
 final BlockerQueue blockerQueue = new BlockerQueue(2);
 new Thread() {
 public void run() {
 System.out.println("Thread1: attempting to remove an item from the queue ");
 Object o = blockerQueue.remove();
 }
 }.start();
  
 new Thread() {
 public void run() {
 System.out.println("Thread2: attempting to insert an item to the queue");
 blockerQueue.insert("one");
 }
 }.start();
 }
}
 

This test code prints the following:
 
Thread1: attempting to remove an item from the queue
In remove(): no element to remove, so waiting for insertion
Thread2: attempting to insert an item to the queue
In insert(): inserted the element one
In insert(): notified that queue is not empty
In remove(): got notification that an element has got inserted
In remove(): removed the element one
In remove(): signalled that there is space for insertion
 

As you can see from the output, the remove() method got called first, which waits for insert() to be called. Once
insert() is complete, the remove() method successfully removes the element from the queue. Now, let’s try another
test case to test if blocking in the insert() method works:
 
class BlockerQueueTest2 {
 public static void main(String []args) {
 final BlockerQueue blockerQueue = new BlockerQueue(3);
 blockerQueue.insert("one");
 blockerQueue.insert("two");
 blockerQueue.insert("three");
 new Thread() {

Chapter 14 ■ Concurrency

462

 public void run() {
 System.out.println("Thread2: attempting to insert an item to the queue");
 blockerQueue.insert("four");
 }
 }.start();
 
 new Thread() {
 public void run() {
 System.out.println("Thread1: attempting to remove an item from the queue ");
 Object o = blockerQueue.remove();
 }
 }.start();
 }
}
 

This test code prints the following:
 
In insert(): inserted the element one
In insert(): notified that queue is not empty
In insert(): inserted the element two
In insert(): notified that queue is not empty
In insert(): inserted the element three
In insert(): notified that queue is not empty
Thread2: attempting to insert an item to the queue
In insert(): queue is full, so waiting for removal
Thread1: attempting to remove an item from the queue
In remove(): removed the element three
In remove(): signalled that there is space for insertion
In insert(): got notification that remove got called, so proceeding to insert the element
In insert(): inserted the element four
In insert(): notified that queue is not empty
 

As you can see from the output, when a thread invokes insert on the full queue (you have specified the capacity
as 3 elements in this case), the thread blocks. Once another thread removed an element from the queue, the blocked
thread resumes and successfully inserts the element.

Use Executors and ThreadPools
You can directly create and manage threads in the application by creating Thread objects. However, if you want to
abstract away the low-level details of multi-threaded programming, you can make use of the Executor interface.

Figure 14-1 shows the important classes and interfaces in the Executor hierarchy. In this section, you’ll focus on
using the Executor interface, ExecutorService, and ThreadPools. We’ll cover ForkJoinPool in the next section, “Use
the Parallel Fork/Join Framework.”

Chapter 14 ■ Concurrency

463

Executor
Executor is an interface that declares only one method: void execute(Runnable). This may not look like a big
interface by itself, but its derived classes (or interfaces), such as ExecutorService, ThreadPoolExecutor, and
ForkJoinPool, support useful functionality. We will discuss the derived classes of Executor in more detail in the rest
of this section. For now, look at Listing 14-12 for a simple example of the Executor interface to understand how to
implement this interface and use it in practice.

Listing 14-12.  ExecutorTest.java

import java.util.concurrent.*;
 
// This Task class implements Runnable, so its a Thread object
class Task implements Runnable {
 public void run() {
 System.out.println("Calling Task.run() ");
 }
}
 
// This class implements Executor interface and should override execute(Runnable) method.
// We provide an overloaded execute method with an additional argument 'times' to create and
// run the threads for given number of times
class RepeatedExecutor implements Executor {
 public void execute(Runnable runnable) {
 new Thread(runnable).start();
 }

Executor
(Interface)

AbstractExecutorService
(abstract class)

ExecutorService
(Interface)

ScheduledThreadPoolExecutor

ThreadPoolExecutor ForkJoinPool

Figure 14-1.  Important classes/interfaces in the Executor hierarchy

Chapter 14 ■ Concurrency

464

 public void execute(Runnable runnable, int times) {
 System.out.printf("Calling Task.run() thro' Executor.execute() for %d times %n", times);
 for(int i = 0; i < times; i++) {
 execute(runnable);
 }
 }
}
 
// This class spawns a Task thread and explicitly calls start() method.
// It also shows how to execute a Thread using Executor
class ExecutorTest {
 public static void main(String []args) {
 Runnable runnable = new Task();
 System.out.println("Calling Task.run() by directly creating a Thread object");
 Thread thread = new Thread(runnable);
 thread.start();
 RepeatedExecutor executor = new RepeatedExecutor();
 executor.execute(runnable, 3);
 }
}
 

Here is the output of this program:
 
Calling Task.run() by directly creating a Thread object
Calling Task.run()
Calling Task.run() thro' Executor.execute() for 3 times
Calling Task.run()
Calling Task.run()
Calling Task.run()
 

In this program, you have a Task class that implements Runnable by providing the definition of the run()
method. The class RepeatedExecutor implements the Executor interface by providing the definition of the
execute(Runnable) method.

Both Runnable and Executor are similar in the sense that they provide a single method for implementation. In
this definition you may have noticed that Exectutor by itself is not a thread, and you must create a Thread object
to execute the Runnable object passed in the execute() method. However, the main difference between Runnable
and Exectutor is that Executor is meant to abstract how the thread is executed. For example, depending on the
implementation of Executor, Exectutor may schedule a thread to run at a certain time, or execute the thread after a
certain delay period.

In this program, you have overloaded the execute() method with an additional argument to create and execute
threads a certain number of times. In the main() method, you first create a Thread object and schedule it for running.
After that, you instantiate RepeatedExectutor to execute the thread three times.

Callable, Executors, ExecutorService, ThreadPool, and Future
Callable is an interface that declares only one method: call(). Its full signature is V call() throws Exception. It
represents a task that needs to be completed by a thread. Once the task completes, it returns a value. For some reason,
if the call() method cannot execute or fails, it throws an Exception.

To execute a task using the Callable object, you first create a thread pool. A thread pool is a collection of threads
that can execute tasks. You create a thread pool using the Executors utility class. This class provides methods to get
instances of thread pools, thread factories, etc.

Chapter 14 ■ Concurrency

465

The ExecutorService interface implements the Executor interface and provides services such as termination of
threads and production of Future objects. Some tasks may take considerable execution time to complete. So, when
you submit a task to the executor service, you get a Future object.

Future represents objects that contain a value that is returned by a thread in the future (i.e., it returns the value
once the thread terminates in the “future”). You can use the isDone() method in the Future class to check if the task is
complete and then use the get() method to fetch the task result. If you call the get() method directly while the task is
not complete, the method blocks until it completes and returns the value once available.

Enough talking—try a simple example to see how these classes work together (Listing 14-13).

Listing 14-13.  CallableTest.java

// Factorial implements Callable so that it can be passed to a ExecutorService
// and get executed as a task.
class Factorial implements Callable<Long> {
 long n;
 public Factorial(long n) {
 this.n = n;
 }
 public Long call() throws Exception {
 if(n <= 0) {
 throw new Exception("for finding factorial, N should be > 0");
 }
 long fact = 1;
 for(long longVal = 1; longVal <= n; longVal++) {
 fact *= longVal;
 }
 return fact;
 }
}
 
// Illustrates how Callable, Executors, ExecutorService, and Future are related;
// also shows how they work together to execute a task
class CallableTest {
 public static void main(String []args) throws Exception {
 // the value for which we want to find the factorial
 long N = 20;
 // get a callable task to be submitted to the executor service
 Callable<Long> task = new Factorial(N);
 // create an ExecutorService with a fixed thread pool consisting of one thread
 ExecutorService es = Executors.newSingleThreadExecutor();
 // submit the task to the executor service and store the Future object
 Future<Long> future = es.submit(task);
 // wait for the get() method that blocks until the computation is complete.
 System.out.printf("factorial of %d is %d", N, future.get());
 // done. shutdown the executor service since we don't need it anymore
 es.shutdown();
 }
}

The program prints the following:
 
factorial of 20 is 2432902008176640000
 

Chapter 14 ■ Concurrency

466

In this program, you have a Factorial class that implements Callable. Since the task is to compute the
factorial of a number N, the task needs to return a result. You use Long type for the factorial value, so you implement
Callable<Long>. Inside the Factorial class, you define the call() method that actually performs the task (the task
here is to compute the factorial of the given number). If the given value N is negative or zero, you don’t perform the
task and throw an exception to the caller. Otherwise, you loop from 1 to N and find the factorial value.

In the CallableTest class, you first create an instance of the Factorial class. You then need to execute this task.
For the sake of simplicity, you get a singled-threaded executor by calling the newSingleThreadExecutor() method
in the Executors class. Note that you could use other methods such as newFixedThreadPool(nThreads) to create a
thread pool with multiple threads depending on the level of parallelism you need.

Once you get an ExecutorService, you submit the task for execution. ExecutorService abstracts details such
as when the task is executed, how the task is assigned to the threads, etc. You get a reference to Future<Long> when
you call the submit(task) method. From this future reference, you call the get() method to fetch the result after
completing the task. If the task is still executing when you call future.get(), this get() method will block until the
task execution completes. Once the execution is complete, you need to manually release the ExecutorService by
calling the shutdown() method.

Now that you are familiar with the basic mechanism of how to execute tasks, here’s a complex example. Assume
that your task is to find the sum of numbers from 1 to N where N is a large number (a million in our case). Of course,
you can use the formula [(N * (N + 1)) / 2] to find out the sum. Yes, you’ll make use of this formula to check if the
summation from 1 . . . N is correct or not. However, just for illustration, you’ll divide the range 1 to 1 million to N
sub-ranges and by spawn N threads to sum up numbers in that sub-range; see Listing 14-14.

Listing 14-14.  SumOfN.java

import java.util.*;
import java.util.concurrent.*;
 
// We create a class SumOfN that sums the values from 1..N where N is a large number.
// We divide the task
// to sum the numbers to 10 threads (which is an arbitrary limit just for illustration).
// Once computation is complete, we add the results of all the threads,
// and check if the calculation is correct by using the formula (N * (N + 1))/2.
class SumOfN {
 private static long N = 1_000_000L; // one million
 private static long calculatedSum = 0; // value to hold the sum of values in range 1..N
 private static final int NUM_THREADS = 10; // number of threads to create for distributing the effort
  
 // This Callable object sums numbers in range from..to
 static class SumCalc implements Callable<Long> {
 long from, to, localSum = 0;

 public SumCalc(long from, long to) {
 this.from = from;
 this.to = to;
 }
 public Long call() {
 // add in range 'from' .. 'to' inclusive of the value 'to'
 for(long i = from; i <= to; i++) {
 localSum += i;
 }
 return localSum;
 }
 }
 

Chapter 14 ■ Concurrency

467

 // In the main method we implement the logic to divide the summation tasks to
 // given number of threads and finally check if the calculated sum is correct
 public static void main(String []args) {
 // Divide the task among available fixed number of threads
 ExecutorService executorService = Executors.newFixedThreadPool(NUM_THREADS);
 // store the references to the Future objects in a List for summing up together
 List<Future<Long>> summationTasks = new ArrayList<>();
 long nByTen = N/10; // divide N by 10 so that it can be submitted as 10 tasks
 for(int i = 0; i < NUM_THREADS; i++) {
 // create a summation task
 // starting from (10 * 0) + 1 .. (N/10 * 1) to (10 * 9) + 1 .. (N/10 * 10)
 long fromInInnerRange = (nByTen * i) + 1;
 long toInInnerRange = nByTen * (i+1);
 System.out.printf("Spawning thread for summing in range %d to %d %n",
fromInInnerRange, toInInnerRange);
 // Create a callable object for the given summation range
 Callable<Long> summationTask =
 new SumCalc(fromInInnerRange, toInInnerRange);
 // submit that task to the executor service
 Future<Long> futureSum = executorService.submit(summationTask);
 // it will take time to complete, so add it to the list to revisit later
 summationTasks.add(futureSum);
 }
 
 // now, find the sum from each task
 for(Future<Long> partialSum : summationTasks) {
 try {
 // the get() method will block (i.e., wait) until the computation is over
 calculatedSum += partialSum.get();
 } catch(CancellationException | ExecutionException
 | InterruptedException exception) {
 // unlikely that you get an exception - exit in case something goes wrong
 exception.printStackTrace();
 System.exit(-1);
 }
 }
 
 // now calculate the sum using formula (N * (N + 1))/2 without doing the hard-work
 long formulaSum = (N * (N + 1))/2;
 // print the sum using formula and the ones calculated one by one
 // they must be equal!
 System.out.printf("Sum by threads = %d, sum using formula = %d",
 calculatedSum, formulaSum);
 }
}
 

Here is the output of this program:
 
Spawning thread for summing in range 1 to 100000
Spawning thread for summing in range 100001 to 200000
Spawning thread for summing in range 200001 to 300000
Spawning thread for summing in range 300001 to 400000

Chapter 14 ■ Concurrency

468

Spawning thread for summing in range 400001 to 500000
Spawning thread for summing in range 500001 to 600000
Spawning thread for summing in range 600001 to 700000
Spawning thread for summing in range 700001 to 800000
Spawning thread for summing in range 800001 to 900000
Spawning thread for summing in range 900001 to 1000000
Sum by threads = 500000500000, sum using formula = 500000500000
 

Let’s now analyze how this program works. In this program, you need to find the sum of 1..N where N is one
million (a large number). The class SumCalc implements Callable<Long> to sum the values in the range from to
to. The call() method performs the actual computation of the sum by looping from from to to and returns the
intermediate sum value as a Long value.

In this program, you divide the summation task among multiple threads. You can determine the number of
threads based on the number of cores available in your processor; however, for the sake of keeping the program
simpler, use ten threads.

In the main() method, you create a ThreadPool with ten threads. You are going to create ten summation tasks, so
you need a container to hold the references to those tasks. Use ArrayList to hold the Future<Long> references.

In the first for loop in main(), you create ten tasks and submit them to the ExecutorService. As you submit a
task, you get a Future<Long> reference and you add it to the ArrayList.

Once you’ve created the ten tasks, you traverse the array list in the next for loop to get the results of the tasks. You
sum up the partial results of the individual tasks to compute the final sum.

Once you get the computed sum of values from one to one million, you use the simple formula N * (N + 1)/2
to find the formula sum. From the output, you can see that the computed sum and the formula sum are equal, so you
can ascertain that your logic of dividing the tasks and combining the results of the tasks worked correctly.

Now, before we move on to discuss the fork/join framework, we’ll quickly discuss a few classes that are useful for
concurrent programming.

ThreadFactory
ThreadFactory is an interface that is meant for creating threads instead of explicitly creating threads by calling new
Thread(). For example, assume that you often create high-priority threads. You can create a MaxPriorityThreadFactory
to set the default priority of threads created by that factory to maximum priority (see Listing 14-15).

Listing 14-15.  TestThreadFactory.java

import java.util.concurrent.*;
 
// A ThreadFactory implementation that sets the thread priority to max
// for all the threads it creates
class MaxPriorityThreadFactory implements ThreadFactory {
 private static long count = 0;
 public Thread newThread(Runnable r) {
 Thread temp = new Thread(r);
 temp.setName("prioritythread" + count++);
 temp.setPriority(Thread.MAX_PRIORITY);
 return temp;
 }
}
 

Chapter 14 ■ Concurrency

469

class ARunnable implements Runnable {
 public void run() {
 System.out.println("Running the created thread ");
 }
}
 
class TestThreadFactory {
 public static void main(String []args) {
 ThreadFactory threadFactory = new MaxPriorityThreadFactory();
 Thread t1 = threadFactory.newThread(new ARunnable());
 System.out.println("The name of the thread is " + t1.getName());
 System.out.println("The priority of the thread is " + t1.getPriority());
 t1.start();
 }
}
 

It prints the following:
 
The name of the thread is prioritythread0
The priority of the thread is 10
Running the created thread
 

With the use of ThreadFactory, you can reduce boilerplate code to set thread priority, name, thread-pool, etc.

The ThreadLocalRandom Class
When you do concurrent programming, you’ll find that there is often a need to generate random numbers.
Using Math.random() is not efficient for concurrent programming. For this reason, the java.util.concurrent
package introduces the ThreadLocalRandom class, which is suitable for use in concurrent programs. You can use
ThreadLocalRandom.current() and then call methods such as nextInt() and nextFloat() to generate the
random numbers.

TimeUnit Enumeration
You’ve already seen some methods earlier in this chapter that take TimeUnit as an argument. TimeUnit is an
enumeration that is used to specify the resolution of the timing. The unit of time in TimeUnit can be one of DAYS,
HOURS, MINUTES, SECONDS, MICROSECONDS, MILLISECONDS, or NANOSECONDS. The enumeration also has useful methods
for converting between these time units. For example,
 
System.out.printf("One day has %d hours, %d minutes, %d seconds",
 TimeUnit.DAYS.toHours(1), TimeUnit.DAYS.toMinutes(1), TimeUnit.DAYS.toSeconds(1));
 
prints
 
One day has 24 hours, 1440 minutes, 86400 seconds
 

Some of the methods in the Java API use specific periods. For example, the sleep() method takes time to sleep
in milliseconds. So, what if you want to specify the time for thread sleep in some other time unit, say seconds or days?
TimeUnit makes this task easy. See Listing 14-16 for an example.

Chapter 14 ■ ConCurrenCy

470

Listing 14-16. TimeUnitExample.java

import java.util.concurrent.TimeUnit;

// A simple example showing how to make use of TimeUnit enumeration
class TimeUnitExample {
 public static void main(String []args) throws InterruptedException {
 System.out.println("Calling sleep() method on main thread for 2 seconds");
 // Thread.sleep takes milli-seconds as argument. By using TimeUnit enumeration,
 // you can specify the time to sleep in other time units such as hours, minutes,
 // seconds, etc.
 Thread.sleep(TimeUnit.SECONDS.toMillis(2));
 System.out.println("main thread wakes up from sleep");
 }
}

Use the Parallel Fork/Join Framework
The Fork/Join framework in the java.util.concurrent package helps simplify writing parallelized code. The
framework is an implementation of the ExecutorService interface and provides an easy-to-use concurrent platform
in order to exploit multiple processors. This framework is very useful for modeling divide-and-conquer problems.
This approach is suitable for tasks that can be divided recursively and computed on a smaller scale; the computed
results are then combined. Dividing the task into smaller tasks is forking, and merging the results from the smaller
tasks is joining.

The Fork/Join framework uses the work-stealing algorithm: when a worker thread completes its work and is free,
it takes (or “steals”) work from other threads that are still busy doing some work. Initially, it will appear to you that
using Fork/Join is a complex task. Once you get familiar with it, however, you’ll realize that it is conceptually easy and
that it significantly simplifies your job. The key is to recursively subdivide the task into smaller chunks that can be
processed by separate threads.

Briefly, the Fork/Join algorithm is designed as follows:

forkJoinAlgorithm() {
 split tasks;
 fork the tasks;
 join the tasks;
 compose the results;
}

Here is the pseudo-code of how these steps work:

doRecursiveTask(input) {
 if (the task is small enough to be handled by a thread) {
 compute the small task;
 if there is a result to return, do so
 }
 else {
 divide (i.e., fork) the task into two parts
 call compute() on first task, join() on second task, combine both results and return
 }
}

Chapter 14 ■ Concurrency

471

Figure 14-2 visualizes how the task is recursively subdivided into smaller tasks and how the partial results
are combined. As shown by the figure, a task is split into two subtasks, and then each subtask is again split in two
subtasks, and so on until each split subtask is computable by each thread. Once a thread completes the computation,
it returns the result for combining it with other results; in this way all the computed results are combined back.

Figure 14-2.  How the Fork/Join framework uses divide-and-conquer to complete the task

Useful Classes of the Fork/Join Framework
The following classes play key roles in the Fork/Join framework: ForkJoinPool, ForkJoinTask, RecursiveTask, and
RecursiveAction. Let’s consider these classes in more detail.

•	 ForkJoinPool is the most important class in the Fork/Join framework. It is a thread pool
for running fork/join tasks—it executes an instance of ForkJoinTask. It executes tasks and
manages their lifecycle. Table 14-8 lists the important methods belonging to this abstract class.

Table 14-8.  Important Methods in the ForkJoinPool Class

Method Description

void execute(ForkJoinTask<?> task) Executes a given task asynchronously.

<T> T invoke(ForkJoinTask<T> task) Executes the given task and returns the computed result.

<T> List<Future<T>>
invokeAll(Collection<? extends
 Callable<T>> tasks)

Executes all the given tasks and returns a list of future
objects when all the tasks are completed.

boolean isTerminated() Returns true if all the tasks are completed.

int getParallelism()

int getPoolSize()

long getStealCount()

Status checking methods.

int getActiveThreadCount()
<T> ForkJoinTask<T> submit(Callable<T> task)

<T> ForkJoinTask<T> submit(ForkJoinTask<T> task)

ForkJoinTask<?> submit(Runnable task)

<T> ForkJoinTask<T> submit(Runnable task, T result)

Executes a submitted task. Overloaded versions take
different types of tasks; returns a Task object or a
Future object.

Chapter 14 ■ Concurrency

472

•	 ForkJoinTask<V> is a lightweight thread-like entity representing a task that defines methods
such as fork() and join(). Table 14-9 lists the important methods of this class.

Table 14-9.  Important Methods in the ForkJoinTask Class

Method Description

boolean cancel(boolean mayInterruptIfRunning) Attempts to cancel the execution of the task.

ForkJoinTask<V> fork() Executes the task asynchronously.

V join() Returns the result of the computation when the
computation is done.

V get() Returns the result of the computation; waits if the
computation is not complete.

V invoke()

static <T extends ForkJoinTask<?>>
Collection<T> invokeAll(Collection<T> tasks)

Starts the execution of the submitted tasks; waits until
computation complete, and returns results.

boolean isCancelled() Returns true if the task is cancelled.

boolean isDone() Returns true if the task is completed.

•	 RecursiveTask<V> is a task that can run in a ForkJoinPool; the compute() method returns a
value of type V. It inherits from ForkJoinTask.

•	 RecursiveAction is a task that can run in a ForkJoinPool; its compute() method performs the
actual computation steps in the task. It is similar to RecursiveTask, but does not return a value.

Using the Fork/Join Framework
Let’s ascertain how you can use Fork/Join framework in problem solving. Here are the steps to use the framework:

First, check whether the problem is suitable for the Fork/Join framework or not. Remember: •	
the Fork/Join framework is not suitable for all kinds of tasks. This framework is suitable if your
problem fits this description:

The problem can be designed as a recursive task where the task can be subdivided into •	
smaller units and the results can be combined together.

The subdivided tasks are independent and can be computed separately without the need •	
for communication between the tasks when computation is in process. (Of course, after
the computation is over, you will need to join them together.)

If the problem you want to solve can be modeled recursively, then define a task class that •	
extends either RecursiveTask or RecursiveAction. If a task returns a result, extend from
RecursiveTask; otherwise extend from RecursiveAction.

Override the •	 compute() method in the newly defined task class. The compute() method
actually performs the task if the task is small enough to be executed; or split the task into
subtasks and invoke them. The subtasks can be invoked either by invokeAll() or fork()
method (use fork() when the subtask returns a value). Use the join() method to get the
computed results (if you used fork() method earlier).

Chapter 14 ■ Concurrency

473

Merge the results, if computed from the subtasks.•	

Then instantiate •	 ForkJoinPool, create an instance of the task class, and start the execution of
the task using the invoke() method on the ForkJoinPool instance.

That’s it—you are done.•	

Now let’s try solving the problem of how to sum 1..N where N is a large number. In Listing 14-16, you subdivided
the sum computation task iteratively into ten sub-ranges; then you computed the sum for each sub-range and then
computed the sum-of-the-partial sums. Alternatively, you can solve this problem rescursively using the Fork/Join
framework (Listing 14-17).

Listing 14-17.  SumOfNUsingForkJoin.java

import java.util.concurrent.*;
 
// This class illustrates how we can compute sum of 1..N numbers using fork/join framework.
// The range of numbers are divided into half until the range can be handled by a thread.
// Once the range summation completes, the result gets summed up together.
 
class SumOfNUsingForkJoin {
 private static long N = 1000_000; // one million - we want to compute sum
 // from 1 .. one million
 private static final int NUM_THREADS = 10; // number of threads to create for
 // distributing the effort
 
 // This is the recursive implementation of the algorithm; inherit from RecursiveTask
 // instead of RecursiveAction since we're returning values.
 static class RecursiveSumOfN extends RecursiveTask<Long> {
 long from, to;
 // from and to are range of values to sum-up
 public RecursiveSumOfN(long from, long to) {
 this.from = from;
 this.to = to;
 }
 // the method performs fork and join to compute the sum.
 // if the range of values can be summed by a thread
 // (remember that we want to divide the summation task equally among NUM_THREADS)
 // then, sum the range of numbers from..to using a simple for loop
 // otherwise, fork the range and join the results
 public Long compute() {
 if((to - from) <= N/NUM_THREADS) {
 // the range is something that can be handled by a thread, so do summation
 long localSum = 0;
 // add in range 'from' .. 'to' inclusive of the value 'to'
 for(long i = from; i <= to; i++) {
 localSum += i;
 }
 System.out.printf("\t Summing of value range %d to %d is %d %n",
from,to, localSum);
 return localSum;
 }

Chapter 14 ■ Concurrency

474

 else { // no, the range is big for a thread to handle, so fork the computation
 // we find the mid-point value in the range from..to
 long mid = (from + to)/2;
 System.out.printf("Forking computation into two ranges: " +
 "%d to %d and %d to %d %n", from, mid, mid, to);
 // determine the computation for first half with the range from..mid
 RecursiveSumOfN firstHalf = new RecursiveSumOfN(from, mid);
 // now, fork off that task
 firstHalf.fork();
 // determine the computation for second half with the range mid+1..to
 RecursiveSumOfN secondHalf = new RecursiveSumOfN(mid + 1, to);
 long resultSecond = secondHalf.compute();
 // now, wait for the first half of computing sum to
 // complete, once done, add it to the remaining part
 return firstHalf.join() + resultSecond;
 }
 }
 }
  
 public static void main(String []args) {
 // Create a fork-join pool that consists of NUM_THREADS
 ForkJoinPool pool = new ForkJoinPool(NUM_THREADS);
 // submit the computation task to the fork-join pool
 long computedSum = pool.invoke(new RecursiveSumOfN(0, N));
 // this is the formula sum for the range 1..N
 long formulaSum = (N * (N + 1)) / 2;
 // Compare the computed sum and the formula sum
 System.out.printf("Sum for range 1..%d; computed sum = %d, formula sum = %d %n", N,
computedSum, formulaSum);
 }
}
 

The program prints the following:
 
Forking computation into two ranges: 0 to 500000 and 500000 to 1000000
Forking computation into two ranges: 0 to 250000 and 250000 to 500000
Forking computation into two ranges: 0 to 125000 and 125000 to 250000
Forking computation into two ranges: 0 to 62500 and 62500 to 125000
 Summing of value range 0 to 62500 is 1953156250
 Summing of value range 62501 to 125000 is 5859406250
Forking computation into two ranges: 125001 to 187500 and 187500 to 250000
 Summing of value range 125001 to 187500 is 9765656250
 Summing of value range 187501 to 250000 is 13671906250
Forking computation into two ranges: 250001 to 375000 and 375000 to 500000
Forking computation into two ranges: 250001 to 312500 and 312500 to 375000
 Summing of value range 250001 to 312500 is 17578156250
 Summing of value range 312501 to 375000 is 21484406250
Forking computation into two ranges: 375001 to 437500 and 437500 to 500000
 Summing of value range 375001 to 437500 is 25390656250
 Summing of value range 437501 to 500000 is 29296906250
Forking computation into two ranges: 500001 to 750000 and 750000 to 1000000
Forking computation into two ranges: 500001 to 625000 and 625000 to 750000

Chapter 14 ■ Concurrency

475

Forking computation into two ranges: 500001 to 562500 and 562500 to 625000
 Summing of value range 500001 to 562500 is 33203156250
 Summing of value range 562501 to 625000 is 37109406250
Forking computation into two ranges: 625001 to 687500 and 687500 to 750000
 Summing of value range 625001 to 687500 is 41015656250
 Summing of value range 687501 to 750000 is 44921906250
Forking computation into two ranges: 750001 to 875000 and 875000 to 1000000
Forking computation into two ranges: 750001 to 812500 and 812500 to 875000
 Summing of value range 750001 to 812500 is 48828156250
 Summing of value range 812501 to 875000 is 52734406250
Forking computation into two ranges: 875001 to 937500 and 937500 to 1000000
 Summing of value range 875001 to 937500 is 56640656250
 Summing of value range 937501 to 1000000 is 60546906250
Sum for range 1..1000000; computed sum = 500000500000, formula sum = 500000500000
 

Let’s analyze how this program works. In this program, you want to compute the sum of the values in the range
1..1,000,000. For the sake of simplicity, you decide to use ten threads to execute the tasks. The class RecursiveSumOfN
extends RecursiveTask<Long>. In RecursiveTask<Long>, you use <Long> because the sum of numbers in each
sub-range is a Long value. In addition, you chose RecursiveTask<Long> instead of plain RecursiveAction because
each subtask returns a value. If the subtask does not return a value, you can use RecursiveAction instead.

In the compute() method, you decide whether to compute the sum for the range or subdivide the task further
using following condition:
 
(to - from) <= N/NUM_THREADS)
 

You use this “threshold” value in this computation. In other words, if the range of values is within the threshold
that can be handled by a task, then you perform the computation; otherwise you recursively divide the task into two
parts. You use a simple for loop to find the sum of the values in that range. In the other case, you divide the range
similarly to how you divide the range in a binary search algorithm: for the range from .. to, you find the mid-point
and create two sub-ranges from .. mid and mid + 1 .. to. Once you call fork(), you wait for the first task to
complete the computation of the sum and spawn another task for the second half of the computation.

In the main() method, you create a ForkJoinPool with number of threads given by NUM_THREADS. You submit
the task to the fork/join pool and get the computed sum for 1..1,000,000. Now you also calculate the sum using the
formula to sum N continuous numbers.

From the output of the program, you can observe how the task got subdivided into subtasks. You can also verify
from the output that the computed sum and sum computed from the formula are the same, indicating that your
division of tasks for summing the sub-ranges is correct.

In this program, you arbitrarily assumed the number of threads to use was ten threads. This was to simplify the
logic of this program. A better approach to decide the threshold value is to divide the data size length by the number
of available processors. In other words,

  threshold value = (data length size) / (number of available processors);
 

How do you programmatically get the number of available processors? For that you can use the method
Runtime.getRuntime().availableProcessors()).

In Listing 14-17, you used RecursiveTask; however, if a task is not returning a value, then you should use
RecursiveAction. Let’s implement a search program using RecursiveAction. Assume that you have a big array (say
of 10,000 items) and you want to search a key item. You can use the Fork/Join framework to split the task into several
subtasks and execute them in parallel. Listing 14-18 contains the program implementing the solution.

Chapter 14 ■ Concurrency

476

Listing 14-18.  SearchUsingForkJoin.java

import java.util.concurrent.*;
 
//This class illustrates how we can search a key within N numbers using fork/join framework
// (using RecursiveAction).
//The range of numbers are divided into half until the range can be handled by a thread.
class SearchUsingForkJoin {
 private static int N = 10000;
 private static final int NUM_THREADS = 10; // number of threads to create for
 // distributing the effort
 private static int searchKey= 100;
 private static int[] arrayToSearch;

 // This is the recursive implementation of the algorithm;
 // inherit from RecursiveAction
 static class SearchTask extends RecursiveAction {
 private static final long serialVersionUID = 1L;
 int from, to;
 // from and to are range of values to search
 public SearchTask(int from, int to) {
 this.from = from;
 this.to = to;
 }
  
 public void compute() {
 //If the range is smaller enough to be handled by a thread,
 //we search in the range
 if((to - from) <= N/NUM_THREADS) {
 // add in range 'from' .. 'to' inclusive of the value 'to'
 for(int i = from; i <= to; i++) {
 if(arrayToSearch[i] == searchKey)
 System.out.println("Search key found at index:" +i);
 }
 }
 else {
 // no, the range is big for a thread to handle,
 // so fork the computation
 // we find the mid-point value in the range from..to
 int mid = (from + to)/2;
 System.out.printf("Forking computation into two ranges: " +
"%d to %d and %d to %d %n", from, mid, mid, to);
 //invoke all the subtasks
 invokeAll(new SearchTask(from, mid),new SearchTask(mid + 1, to));
 }
 }
 }
  

Chapter 14 ■ Concurrency

477

 public static void main(String []args) {
 //intantiate the array to be searched
 arrayToSearch = new int[N];
 //fill the array with random numbers
 for(int i=0; i<N; i++){
 arrayToSearch[i] = ThreadLocalRandom.current().nextInt(0,1000);
 }
 // Create a fork-join pool that consists of NUM_THREADS
 ForkJoinPool pool = new ForkJoinPool(NUM_THREADS);
 // submit the computation task to the fork-join pool
 pool.invoke(new SearchTask(0, N-1));
 }
}
 

The program prints the following output (which might be different from run to run):
 
Forking computation into two ranges: 0 to 4999 and 4999 to 9999
Forking computation into two ranges: 0 to 2499 and 2499 to 4999
Forking computation into two ranges: 5000 to 7499 and 7499 to 9999
Forking computation into two ranges: 2500 to 3749 and 3749 to 4999
Forking computation into two ranges: 0 to 1249 and 1249 to 2499
Forking computation into two ranges: 2500 to 3124 and 3124 to 3749
Forking computation into two ranges: 7500 to 8749 and 8749 to 9999
Forking computation into two ranges: 5000 to 6249 and 6249 to 7499
Forking computation into two ranges: 8750 to 9374 and 9374 to 9999
Forking computation into two ranges: 5000 to 5624 and 5624 to 6249
Forking computation into two ranges: 7500 to 8124 and 8124 to 8749
Forking computation into two ranges: 3750 to 4374 and 4374 to 4999
Search key found at index:4736
Search key found at index:2591
Forking computation into two ranges: 1250 to 1874 and 1874 to 2499
Search key found at index:1315
Forking computation into two ranges: 0 to 624 and 624 to 1249
Search key found at index:445
Search key found at index:9402
Search key found at index:9146
Forking computation into two ranges: 6250 to 6874 and 6874 to 7499
Search key found at index:6797
Search key found at index:7049
Search key found at index:862
 

The key difference between Listings 14-14 and 14-15 is that you used RecursiveAction in the latter instead of
RecursiveTask. You made several changes to extend the task class from RecursiveAction. The first change is that
the compute() method is not returning anything. Another change is that you used the invokeAll() method to submit
the subtasks to execute. Another obvious change is that you carried out search in the compute() method instead of
summation in earlier case. Apart from these changes, the program in Listing 14-17 works much like the program in
Listing 14-18.

Chapter 14 ■ Concurrency

478

Points to Remember
Remember these points for your exam:

It is possible to achieve what the Fork/Join framework offers using basic concurrency •	
constructs such as start() and join(). However, the Fork/Join framework abstracts many
lower-level details and thus is easier to use. In addition, it is much more efficient to use
the Fork/Join framework instead handling the threads at lower levels. Furthermore, using
ForkJoinPool efficiently manages the threads and performs much better than conventional
threads pools. For all these reasons, you are encouraged to use the Fork/Join framework.

Each •	 worker thread in the Fork/Join framework has a work queue, which is implemented
using a Deque. Each time a new task (or subtask) is created, it is pushed to the head of its
own queue. When a task completes a task and executes a join with another task that is not
completed yet, it works smart. The thread pops a new task from the head of its queue and
starts executing rather than sleeping (in order to wait for another task to complete). In fact,
if the queue of a thread is empty, then the thread pops a task from the tail of the queue
belonging to another thread. This is nothing but a work-stealing algorithm.

It looks obvious to call •	 fork() for both the subtasks (if you are splitting in two subtasks) and
call join() two times. It is correct—but inefficient. Why? Well, basically you are creating more
parallel tasks than are useful. In this case, the original thread will be waiting for the other
two tasks to complete, which is inefficient considering task creation cost. That is why you call
fork() once and call compute() for the second task.

The placement of •	 fork() and join() calls are very important. For instance, let’s assume that
you place the calls in following order:

 
first.fork();
resultFirst = first.join();
resultSecond = second.compute();

 
This usage is a serial execution of two tasks, since the second task starts executing only after the first is
complete. Thus, it is less efficient even than its sequential version since this version also includes cost of
the task creation. The take-away: watch your placement of fork/join calls.

Performance is not always guaranteed while using the Fork/Join framework. One of the •	
reasons we mentioned earlier is the placement of fork/join calls.

Question Time!

1.	 Consider the following program:

import java.util.concurrent.atomic.*;

class AtomicIntegerTest {
 static AtomicInteger ai = new AtomicInteger(10);
 public static void check() {
 assert (ai.intValue() % 2) == 0;
 }
 public static void increment() {
 ai.incrementAndGet();
 }

Chapter 14 ■ Concurrency

479

 public static void decrement() {
 ai.getAndDecrement();
 }
 public static void compare() {
 ai.compareAndSet(10, 11);
 }
 public static void main(String []args) {
 increment();
 decrement();
 compare();
 check();
 System.out.println(ai);
 }

} 

The program is invoked as follows:

java -ea AtomicIntegerTest

What is the expected output of this program?

A.  It prints 11.

B.  It prints 10.

C.  It prints 9.

D.  It crashes throwing an AssertionError.

Answer:

D.  It crashes throwing an AssertionError.

(The initial value of AtomicInteger is 10. Its value is incremented by 1 after calling
incrementAndGet(). After that, its value is decremented by 1 after calling
getAndDecrement(). The method compareAndSet(10, 11) checks if the current value
is 10, and if so sets the atomic integer variable to value 11. Since the assert statement
checks if the atomic integer value % 2 is zero (that is, checks if it is an even number),
the assert fails and the program results in an AssertionError.)

2.	 Which one of the following options correctly makes use of Callable that will compile
without any errors?

A.  import java.util.concurrent.Callable;
 
 class CallableTask implements Callable {
 public int call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }
 

Chapter 14 ■ ConCurrenCy

480

B. import java.util.concurrent.Callable;

 class CallableTask extends Callable {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }

C. import java.util.concurrent.Callable;

 class CallableTask implements Callable<Integer> {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }

D. import java.util.concurrent.Callable;

 class CallableTask implements Callable<Integer> {
 public void call(Integer i) {
 System.out.println("In Callable.call(i)");
 }
 }

Answer:

C. import java.util.concurrent.Callable;

 class CallableTask implements Callable<Integer> {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
 }

(the Callable interface is defined as follows:

public interface Callable<V> {
 V call() throws Exception;
}

In option a), the call() method has the return type int, which is incompatible with the
return type expected for overriding the call method and so will not compile.

In option B), the extends keyword is used, which will result in a compiler (since
Callable is an interface, the implements keyword should be used).

option C) correctly defines the Callable interface providing the type parameter
<Integer>. the same type parameter Integer is also used in the return type of the
call() method that takes no arguments, so it will compile without errors.

Chapter 14 ■ Concurrency

481

In option D), the return type of call() is void and the call() method also takes a
parameter of type Integer. Hence, the method declared in the interface Integer call()
remains unimplemented in the CallableTask class and so the program will not compile.)

3.	 Which one of the following methods return a Future object?

A. T he overloaded replace() methods declared in the ConcurrentMap interface

B. T he newThread() method declared in the ThreadFactory interface

C. T he overloaded submit() methods declared in the ExecutorService interface

D. T he call() method declared in the Callable interface

Answer:

C. T he overloaded submit() methods declared in ExecutorService interface

Option A) T he overloaded replace() methods declared in the ConcurrentMap interface
remove an element from the map and return the success status (a Boolean value) or the
removed value.

Option B) The newThread() is the only method declared in the ThreadFactory interface
and it returns a Thread object as the return value.

Option C) The ExecutorService interface has overloaded submit() method that takes a
task for execution and returns a Future representing the pending results of the task.

Option D) The call() method declared in Callable interface returns the result of the task
it executed.)

4.	Y ou’re writing an application that generates random numbers in the range 0 to 100.
You want to create these random numbers for use in multiple threads as well as in
ForkJoinTasks. Which one of the following options will you use for less contention
(i.e., efficient solution)?

A.  int randomInt = ThreadSafeRandom.current().nextInt(0, 100);

B.  int randomInt = ThreadLocalRandom.current().nextInt(0, 101);

C.  int randomInt = new Random(seedInt).nextInt(101);

D.  int randomInt = new Random().nextInt() % 100;

Answer:

B.  int randomInt = ThreadLocalRandom.current().nextInt(0, 101);

(ThreadLocalRandom is a random number generator that is specific to a thread. From API
documentation of this class: “Use of the ThreadLocalRandom rather than shared Random
objects in concurrent programs will typically encounter much less overhead and contention.”

The method "int nextInt(int least, int bound)" in the ThreadLocalRandom class
returns a pseudo-random number that is uniformly distributed between the given
least value and the bound value. Note that the value in parameter least is inclusive of
that value and the bound value is exclusive. So, the call nextInt(0, 101) returns
pseudo-random integers in the range 0 to 100.)

Chapter 14 ■ Concurrency

482

5.	 In your application, there is a producer component that keeps adding new items to a
fixed-size queue; the consumer component fetches items from that queue. If the queue is
full, the producer has to wait for items to be fetched; if the queue is empty, the consumer
has to wait for items to be added.

Which one of the following utilities is suitable for synchronizing the common queue for
concurrent use by a producer and consumer?

A.  RecursiveAction

B.  ForkJoinPool

C.  Future

D.  Semaphore

E.  TimeUnit

Answer:

D.  Semaphore

(The question is a classic producer–consumer problem that can be solved by using
semaphores. The objects of the synchronizer class java.util.concurrent.Semaphore
can be used to guard the common queue so that the producer and consumer can
synchronize their access to the queue. Of the given options, semaphore is the only
synchronizer; other options are unrelated to providing synchronized access to a queue.

Option A) RecursiveAction supports recursive ForkJoinTask, and option B)
ForkJoinPool provides help in running a ForkJoinTask in the context of the Fork/Join
framework. Option C) Future represents the result of an asynchronous computation
whose result will be “available in the future once the computation is complete.” Option E)
TimeUnit is an enumeration that provides support for different time units such as
milliseconds, seconds, and days.)

Summary
Using java.util.concurrent Collections

A semaphore controls access to shared resources. A semaphore maintains a counter to specify •	
number of resources that the semaphore controls.

•	 CountDownLatch allows one or more threads to wait for a countdown to complete.

The •	 Exchanger class is meant for exchanging data between two threads. This class is useful
when two threads need to synchronize between each other and continuously exchange data.

•	 CyclicBarrier helps provide a synchronization point where threads may need to wait at a
predefined execution point until all other threads reach that point.

•	 Phaser is a useful feature when few independent threads have to work in phases to complete a task.

Chapter 14 ■ Concurrency

483

Applying Atomic Variables and Locks

Java provides an efficient alternative in the form of atomic variables where one needs to •	
acquire and release a lock just to carry out primitive operations on variables.

A lock ensures that only one thread accesses a shared resource at a time.•	

A •	 Condition supports thread notification mechanism. When a certain condition is not
satisfied, a thread can wait for another thread to satisfy that condition; that other thread could
notify once the condition is met.

Using Executors and ThreadPools

The •	 Executors hierarchy abstracts the lower-level details of multi-threaded programming and
offers high-level user-friendly concurrency constructs.

The •	 Callable interface represents a task that needs to be completed by a thread. Once the
task completes, the call() method of a Callable implementation returns a value.

A thread pool is a collection of threads that can execute tasks.•	

•	 Future represents objects that contain a value that is returned by a thread in the future.

•	 ThreadFactory is an interface that is meant for creating threads instead of explicitly creating
threads by calling a new Thread().

Using the Parallel Fork/Join Framework

The Fork/Join framework is a portable means of executing a program with decent parallelism.•	

The framework is an implementation of the •	 ExecutorService interface and provides an
easy-to-use concurrent platform in order to exploit multiple processors.

This framework is very useful for modeling divide-and-conquer problems.•	

The Fork/Join framework uses the work-stealing algorithm: when a worker thread completes •	
its work and is free, it takes (or “steals”) work from other threads that are still busy doing
some work.

The work-stealing technique results in decent load balancing thread management with •	
minimal synchronization cost.

•	 ForkJoinPool is the most important class in the Fork/Join framework. It is a thread pool
for running fork/join tasks—it executes an instance of ForkJoinTask. It executes tasks and
manages their lifecycles.

•	 ForkJoinTask<V> is a lightweight thread-like entity representing a task that defines methods
such as fork() and join().

